Guillain–Barré syndrome and it looks like

นพ.นฤพัชร สวนประเสริฐ

สถาบันประสาทวิทยา

Guillain, Barré and Strohl (1916)

Jean Baptiste Octave Landry 1850

П,

TRAVAUX ORIGINAUX.

NOTE SUB LA PARALYSIE ASCENDANTE AIGUE, par le docteur O. LANDRY.

L'objet de cette note est de signaler un état morbide assez rare et généralement inconnu, mais qui mérite de tigurer parmi les affections les plus remarquables des cadres pathologiques.

Dans un assez grand nombre de paralysies, auxquelles convient la qualification générique d'extenso-progressives, les troubles fonctionnels, d'abord restreints à une partie limitée du corps, s'irradient graduellement plus ou moins loin de leur point de départ. Cette propagation s'effectue tantôt de proche en proche, et d'après un ordre bien déterminé; tantôt, au contraire, sans régularité et comme au hasard. On peut appeler les paralysies de ce dernier groupe : extenso-progressives irrégulières, et à celles du premier, bien plus importantes à connaître, donner le nom d'extenso-progressives ascendantes, ou, plus simplement, de paralysies ascendantes ou centripètes. Dans ces affections, en effet, les symptômes

Clinical manifestation

- Acute onset, rapidly progressive in 2-4 wks.
- Distal, relatively symmetrical paresthesia follow by progressive limb weakness
- Widespread areflexia or hyporeflexia
- CN deficits
 - facial diplegia 70%
 - dysphagia 40%
 - extraocular motor dysfunction 5%

Clinical manifestation

- Sensory symptoms
 - numbness
 - ataxia
 - paraesthesia
 - pain 54–89%
- Autonomic dysfunction 50%
- Respiratory failure 25%

Nat. Rev. Neurol. 10, 469-482 (2014)

Autonomic dysfunction

- Sympathetic hyperactivity
 - arrhythmia, tachycardia
 - hypertension
 - decreased Intestinal Activity

- Parasympathetic hyperactivity
 - severe bradycardia, asystole
 - hypotension

Decreased Intestinal Activity

Clinical course - GBS

Epidemiology

- Incidence 0.6-2.4 cases per 100,000 per year
 - Europe 60-80% AIDP
 - Asia 30-60 % AMAN
- M:F 3:2
- Antecedent infection
 - 2/3 URI or diarrhea
 - 2-4 wks. prior onset

Antecedent infection

- Bacterial infection
 - *C. jejuni -* 33%
 - Haemophilus influenzae
 - Mycoplasma pneumonia
 - Lyme disease
- Viral infection EBV, Influenza virus, CMV, HEV
- HIV seroconversion or early disease

Neurology 1998;51:1110–1115 Neurology 1996;47: 668–673

Guillain-Barré Syndrome outbreak associated with Zika virus infection in French Polynesia: a case-control study

Van-Mai Cao-Lormeau*, Alexandre Blake*, Sandrine Mons, Stéphane Lastère, Claudine Roche, Jessica Vanhomwegen, Timothée Dub, Laure Baudouin, Anita Teissier, Philippe Larre, Anne-Laure Vial, Christophe Decam, Valérie Choumet, Susan K Halstead, Hugh J Willison, Lucile Musset, Jean-Claude Manuguerra, Philippe Despres, Emmanuel Fournier, Henri-Pierre Mallet, Didier Musso, Arnaud Fontanet*, Jean Neil*, Frédéric Ghawché*

	viral RNA	lgM	lgG	Zika lo	Zika IgM/IgG			Neutralising antibodies	lgM Zika/l	IgM Zika/IgM dengue			
				+/+	+/-	-/+	- -	Zika virus positive		+/+	+/-	-/+	- -
Guillain-Barré syndrome (N=42*)	0 (0)	39 (93%)	29 (69%)	27	12	2	1	41 (98%)	42 (100%)	8 (19%)	31 (74%)	0	3 (7%)
Control group 1 (N=98)	ND	17 (17%)	25 (26%)	7	10	18	63	35 (36%)	54 (56%)	6 (6%)	11 (11%)	8 (8%)	73 (75%)
Control group 2 (N=70)	70 (100%)	ND	5 (7%)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

Data are n (%) or n. *RT-PCR was only done for 41 patients with Guillain-Barré syndrome; tested samples for patients with Guillain-Barré syndrome are late samples (around 3 months after admission), except for the RT-PCR (admission sample). ND=not done. IFA=immunofluorescent assay. MIA=microsphere immunoassay.

Risk of GBS - 0.24 per 1000 Zika virus infection

Influenza vaccine and GBS

Seasonal influenza vaccine and GBS

	Risk Ratio			Risk Ratio
Study or Subgroup	IV, Random, 95% CI	Year		IV, Random, 95% CI
Hurwitz 1981	1.40 [0.72, 2.74]	1981		
Kaplan 1982b	1.40 [0.95, 2.08]	1982		+ - -
Kaplan 1982a	0.60 [0.35, 1.02]	1982		
Lasky 1998b	1.51 [0.79, 2.88]	1998		+
Lasky 1998a	1.99 [0.97, 4.12]	1998		
Juurlink 2006	1.45 [1.06, 1.98]	2006		
Hughes 2006	0.99 [0.32, 3.09]	2006		
Tam 2007	0.16 [0.02, 1.26]	2007		
Stowe 2009	0.76 [0.42, 1.40]	2009		
Burwen 2010b	1.21 [0.79, 1.86]	2010		
Burwen 2010a	0.86 [0.53, 1.40]	2010		
Grimaldi 2011s	1.30 [0.41, 4.12]	2011		
Tokars 2012s	2.41 [1.51, 3.86]	2012		
Wise 2012s	1.43 [1.01, 2.04]	2012		
Crawford 2012s	0.69 [0.08, 5.85]	2012		
Greene 2012s	1.30 [0.47, 3.59]	2012		<u> </u>
McCarthy 2013b	1.00 [0.45, 2.23]	2013		_
McCarthy 2013a	1.57 [0.61, 4.02]	2013		
Kwong 2013	1.52 [1.16, 2.00]	2013		
Galeotti 2013	3.82 [1.35, 10.79]	2013		
Baxter 2013	1.11 [0.39, 3.12]	2013		
Kawai 2014	0.50 [0.29, 0.87]	2014		
Total (95% CI)	1.22 [1.01, 1.48]			•
Heterogeneity: Tau ² =	0.09; Chi ² = 45.17, df	= 21 (P = 0.002); I ² = 54%		
Test for overall effect:	Z = 2.09 (P = 0.04)		0.01	Unvaccinated Vaccionated
				Vaccine 2015

Pandemic influenza vaccine and GBS

	Risk Ratio		Risk Ratio
Study or Subgroup	IV, Random, 95% CI	Year	IV, Random, 95% CI
MMWR 2010	1.70 [1.13, 2.56]	2010	
Grimaldi 2011p	0.92 [0.11, 7.67]	2011	
Andrews 2011	1.05 [0.43, 2.59]	2011	
Dieleman 2011	1.00 [0.33, 3.00]	2011	
Wise 2012p	1.57 [1.06, 2.32]	2012	
Yih 2012	2.51 [0.42, 14.93]	2012	
Tokars 2012p	2.10 [1.23, 3.56]	2012	
Greene 2012p	4.39 [1.33, 14.52]	2012	
De Wals 2012	2.75 [1.62, 4.66]	2012	
Crawford 2012p	3.42 [0.79, 14.88]	2012	
McCarthy 2013p	1.99 [0.50, 8.02]	2013	
Huang 2013	3.82 [0.43, 33.63]	2013	
Polakowski 2013	2.41 [1.14, 5.08]	2013	
Vellozi 2014	0.83 [0.63, 1.09]	2014	
Romio 2014	1.40 [0.71, 2.79]	2014	
Prestel 2014	4.66 [2.17, 10.02]	2014	
Total (95% CI)	1.84 [1.36, 2.50]		•
Heterogeneity: Tau ² =	= 0.19; Chi² = 41.92, df	= 15 (P = 0.0002); I ² = 64%	
Test for overall effect	: Z = 3.92 (P < 0.0001)		Unvaccinated Vaccinated
			Vaccine 2015

National Center for Immunization & Respiratory Diseases

Influenza Vaccine Effectiveness, 2016-17

US Flu VE Network

&

US Hospitalized Adult Influenza Vaccine Effectiveness Network (HAIVEN)

Jill Ferdinands, PhD CDC Influenza Division Meeting of the Advisory Committee on Immunization Practices (ACIP) June 21, 2017

US Flu VE Network: Vaccine effectiveness against influenza A/B, 2016–17

					Vaccine Effectiveness			
	Influenza positive		Influenza negative		Unadjusted		Adjusted*	
Any influenza A or B virus	N vaccinated/Total	(%)	N vaccinated/Total	l (%)	VE %	95% CI	VE %	95% CI
All ages	883/2052	(43)	2761/5153	(54)	35	(27 to 41)	42	(35 to 48)
Age group (y	r)						_	
6 mo-8 yr	106/353	(30)	709/1318	(54)	63	(53 to 71)	61	(49 to 70)
9– 17	123/402	(31)	245/606	(40)	35	(15 to 50)	35	(13 to 61)
18-49	203/529	(38)	716/1629	(44)	21	(3 to 35)	19	(-1 to 34)
50-64	203/442	(46)	537/909	(59)	41	(26 to 53)	42	(26 to 55)
≥65	248/326	(76)	554/691	(80)	21	(-8 to 43)	25	(-5 to 46)

* Multivariate logistic regression models adjusted for site, age, sex, race/ethnicity, self-rated general health status, days from illness onset to enrollment, and calendar time of illness onset

Is it recommended to get a flu shot?

Vaccination in pts. with hx of GBS

- Vaccination seems to be safe
 - onset of GBS > 6 wks. after vaccination
 - pts. who developed GBS > 3 mo. ago
 - 3.5% repeat episode
 - 1.2% serious GBS

Vaccine 30, 5801–5803 (2012). J. Peripher. Nerv. Syst. 14, 310–315 (2009).

Pathogenesis

Role of gangliosides in nerve

Subtypes of GBS

Table 1 GBS subtypes, clinical features and relevant antibodies ^{3,37,43}					
GBS subtypes	Main clinical features	NCS findings	Antibodies*		
Acute inflammatory demyelinating polyneuropathy (AIDP)	Sensorimotor GBS, often combined with cranial nerve deficits and frequent autonomic dysfunction	Demyelinating polyneuropathy	Various [‡]		
Acute motor axonal neuropathy (AMAN)	Pure motor GBS; cranial nerves rarely affected	Axonal polyneuropathy, sensory action potential normal	GM1a, GM1b GD1a GalNAc-GD1a		
Acute motor sensory axonal neuropathy (AMSAN)	Resembles severe AMAN, but sensory fibres are affected, leading to sensory deficits	Axonal polyneuropathy, sensory action potential reduced or absent	GM1, GD1a		
Pharyngeal– cervical brachial variant	Prominent weakness of oropharyngeal, facial, neck and shoulder muscles	Normal in most patients, sometimes abnormalities in arms, mostly axonal pattern	GT1a>GQ1b >>GD1a		
Miller Fisher syndrome Nat. Rev. Neurol	Ataxia, ophthalmoplegia, areflexia 10, 469–482 (2014)	Normal in most patients; discrete changes in sensory conduction or H-reflex may be present	GQ1b, GT1a		

Table 1 Clinical features of GBS, MFS and their subtypes					
Category	Clinical features				
	Pattern of weakness	Ataxia	Hypersomnolence		
GBS					
Classic GBS	Four limbs	No or minimal	No		
Pharyngeal-cervical-brachial weakness*	Bulbar, cervical and upper limbs	No	No		
Acute pharyngeal weakness [‡]	Bulbar	No	No		
Paraparetic GBS*	Lower limbs	No	No		
Bifacial weakness with paraesthesias*	Facial	No	No		
MFS					
Classic MFS	Ophthalmoplegia	Yes	No		
Acute ophthalmoparesis [§]	Ophthalmoplegia	No	No		
Acute ataxic neuropathy§	No weakness	Yes	No		
Acute ptosis [§]	Ptosis	No	No		
Acute mydriasis§	Paralytic mydriasis	No	No		
BBE	Ophthalmoplegia	Yes	Yes		
Acute ataxic hypersomnolence [¶]	No weakness	Yes	Yes		
		Nat. Rev. Neu	rol. 10, 537–544 (2014		

CASE REPORT AND LITERATURE REVIEW

Pupillary Involvement in Miller Fisher Syndrome

Bahar Kaymakamzade¹, Ferda Selcuk¹, Aydan Koysuren², Ayse Ilksen Colpak², Senem Ertugrul Mut¹, and Tulay Kansu²

Neuro-Ophthalmology, 2013

Atypical GBS

- Normal DTR 2 9%, AMAN subtype
- Pure pandysautonomia
- Definite asymmetrical weakness uncommon

Differential diagnosis

- Acute myelopathy
 - myelitis, ischemia
 - cord compression
- NMJ disease
 - Myasthenia gravis
 - Botulism
- Myopathy
 - DM, PM, NAM
 - rhabdomyolysis
 - toxic myopathy
 - critical illness myopathy

- Polyneuropathy
 - Diphtheria, CMV
 - acute intermittent porphyria
 - acute onset CIDP
 - vasculitic neuropathy
 - critical illness neuropathy
 - n-Hexane, arsenic, lead, thallium
 - toxic neuropathy
- Periordic paralysis
- Hypermanesemia

Porphyria

Porphyric neuropathy

- CNS
 - psychiatric, anxiety, restlessness, insomnia, confusion
 - seizures
- Neuropathy
 - rapid progressive, motor predominant axonal neuropathy
 - areflexia, ascending weakness
 - respiratory, cranial nerve involvement can occur
- Autonomic features
 - tachycardia
 - constipation, gastroparesis, pseudo-obstruction, diarrhea, vomiting,

Investigation - Porphyria

Table 1. Characteristic patterns of abnormal levels of heme precursors in the urine and feces during an attack of hepatic porphyria.²

Туре	Enzyme deficiency	Urine*	Feces [†]
ALA dehydratase deficiency	ALA dehydratase	↑ ALA, Copro	Normal
Acute intermittent	Hydroxymethylbilane (also called PBG deaminase)	↑ ALA, PBG, Uro	Normal
Hereditary coproporphyria	Copro oxidase	↑ ALA, PBG, Uro, Copro	↑ Copro > Proto
Variegate porphyria	Proto oxidase	↑ ALA, PBG, Uro, Copro	↑ Proto > Copro

Dark, brown urine

Prognosis - Porphyric neuropathy

- Abdominal pain, autonomic, CNS rapidly resolved
- neuropathy slowly resolved, months
 - depends on severity of axonal degeneration.
 - incomplete motor function

nepane perpirjuai	
Potentially unsafe	Unsafe
Agents inducing	Alcohol
cytochrome P450	Barbiturates
Alkylating agents	Calcium channel
Clonidine	blockers
Chloroquine	Carbamazepine
Estrogens	Chloramphenicol
Erythromycin	Chlorpropamide
Hydralazine	Clonazepam
Ketamine	Danazol
Lidocaine	Ketamine
Lidocaine	Dapsone
Methyldopa	Ergots
Nalidixic acid	Felbamate
Nortryptyline	Griseofulvin
Pentazocine	Halothane
Phenoxybenzamine	Meprobamate
Rifampin	Phenytoin
Spirolactone	Primidone
Theophylline	Progestins
	Succinamides
	Sulfonamides
	Theophylline
	Tolazamide
	Tolbutamide
	Tranquilizers
	Trimethadone
	Valproic acid
	Potentially unsafe Agents inducing cytochrome P450 Alkylating agents Clonidine Chloroquine Estrogens Erythromycin Hydralazine Ketamine Lidocaine Lidocaine Methyldopa Nalidixic acid Nortryptyline Pentazocine Phenoxybenzamine Rifampin Spirolactone Theophylline

Table 2. Examples of medications and substances reported to be potentially safe, potentially unsafe, and unsafe for use in patients with hepatic porphyria.^{1,2,4,25,97}

Diphtheritic Polyneuropathy

- Corynebacterium diphtheriae
- Exudative pharyngitis
- Cervical lymphadenopathy
- Cardiomyopathy
- Demyelinating polyneuropathy 20-70%
Onset of Diphtheritic Polyneuropathy

Diphtheritic Polyneuropathy

Table 1. Cranial Nerve Disturbances in 32 Patients With Diphtheritic Polyneuropathy

Cranial Nerves	Duration of Involvement, wk	Frequency*
IX and X	7-8	32 (100)
VII	7-8	28 (88)
III, IV, and VI	5-7	27 (84)
XI	7-9	27 (84)
XII	7-8	23 (72)
V	6-7	17 (53)

ARCH NEUROL 2001

CMV polyradiculopathy

• Host

- HIV pts., late stage
- immuno-compromised pts.
- Evidence of CMV infection
 - retinitis, enteritis
- Rapidly progressive lower ext. weakness and pain
- CSF pleocytosis, high protein, low glucose
- NCS axonal polyradiculopathy

Poliomyelitis

Figure 1. Time course of events in infection with poliovirus.

CNS involvement - Poliomyelitis

- Nonparalytic aseptic meningitis
- Flaccid paralysis
 - spinal polio- myelitis 79%
 - Asymmetric, limbs and trunk weakness
 - proximal > distal m.
 - lumbrosacral region most common
 - bulbar poliomyelitis 2%
 - CN VII, IX, X
 - respiratory m.involvement
 - bulbospinal poliomyelitis 19%

Prognosis - Poliomyelitis

- Recovery may be complete in some pts.
- Motor weakness persists beyond 12 mo.
 - lifelong disability
- Death 2-30%, bulbar poliomyelitis
- PPS 22% to 85%
 - progressive motor weakness
 - begin 8 -71 yrs. (average 35 yrs.)

n-Hexane

Hexacarbon neurotoxicity

- Symmetrical, sensory predominant demyelinating polyneuropathy
 - sensory loss all modality
 - distal weakness (proximal in severe case)
 - autonomic rare
- Hyporeflexia or areflexia
- Insidious onset subacute course can developed in excessive abuse
- Progression after stop exposure 1 4 mo.
- Complete recovery in mild cases

Arsenic poisoning

- Acute GI symptoms
 - abdominal pain, nausea, vomiting, diarrhea
 - min. to hours after ingestion
- Polyneuropathy
 - painful neuropathy with progressive distal muscle weakness
 - onset Day 10 3 wks.
 - may progress up to 5 wks.
- Acute and severe poisoning
 - drowsiness, confusion, stupor, psychosis, delirium
 - Hypotension, cardiomyopathy, cardiac arthymia, respiratory m. Involvement
 - death within 24 hrs.

Arsenic poisoning

Organophosphate and Carbamate

- Inhibitacetyl cholinesterase
- salivation, lacrimation, diarrhea, nausia
- Weakness
- Bronchospasm, pulmonary edema, cyanosis
- Bradycardia, chest pain
- Tremor
- Convulsions, coma

Botulism

- Clostridium botulinum
 - Anaerobic, gram
 positive, spore-forming,
 rod-shaped bacterium
- Botulinum toxin
 - colorless, odorless, tasteless
 - inactive by heat (□85°C for 5 min.
- Spores resistant to heat
 - survive in home-canning at temp < 120°C

Human botulism

Pathogenesis - Botulism

Clinical manifestation - Botulism

- Acute, afebrile, symmetric, descending flaccid paralysis
 - ptosis, diplopia, blurred vision
 - enlarged or sluggishly reactive pupils
 - dysarthria, dysphonia, dysphagia
 - dry mouth and injected pharynx
- No sensory changes
 - except circum-oral, peripheral paresthesia from hyperventilation

Diagnostic Tests - Botulism

- Botulinum toxin
 - Mouse bioassay
 - Immunoassay for toxin
 - Polymerase chain reaction (PCR) for toxin
 - Specimen serum, stool, gastric content, enema, suspect food
- C/S for Clostridium botulinum
 - Stool, gastric content

Tetrodotoxin and Saxitoxin

SHELLFISH FROM THIS AREA ARE UNSAFE TO EAT DUE TO PARALYTIC SHELLFISH TOXIN. DO NOT EAT CLAMS, OYSTERS, MUSSELS OR SCALLOPS.

Snake venom

Tick paralysis

Toxin

Thiamine deficiency

ไทยรัฐออนไลน์ วันพุธที่ 11 พฤศจิกายน พ.ศ. 2558

ี้ข่าว | หนังสือพิมพ์ | ไทยรัฐทีวี | ดูย้อนหลัง | ไลฟ์สไตล์ | Social BUZZ | คอลัมน์ | นิยายไท ก่องเกี่ยว | เซ็กซ์ | ข่าวไอกี | ยานยนต์ | แต่งบ้าน | อาหาร | แฟชั่น | สวัสดี...แคมป๋ส

หน้าหลัก / ไลฟ์สไตล์ / สุขภาพ-เซ็กซ์ / สุขภาพหรรษา เหลือเชื่อ ยังมีคนไทยขาดวิตามินบี แขนขาอัมพาต หัว ใจวาย

อ่อนแรงจากการขาดวิตามินบี 1" ว่า เมื่อ ธ.ค. 2557 พบผู้ต้องขังในเรือนจำ แห่งหนึ่ง ในภาคตะวันออกเฉียงเหนือ ป่วยแขนขาอ่อนแรง ชาตามปลายมือ ปลายเท้า และร่างกาย 78 ราย มีอาการรุนแรง 3 ราย จำนวนนี้เสียชีวิต 2 ราย จากการสอบสวนโรค พบเป็นโรคกล้ามเนื้ออ่อนแรงจากการขาดวิตามินบี 1 หรือโรคเหน็บชา ซึ่งการป่วยเป็นกลุ่มก้อนนี้เกิดขึ้นหลังจากการระบาดของ โรคติดเชื้อทางเดินหายใจ ที่เป็นปัจจัยกระตุ้นให้ผู้ที่มีภาวะเริ่มขาดวิตามินบี 1 กลายเป็นขาดวิตามินบี 1 จนแสดงอาการ ทั้งนี้ โรคเหน็บชา มักมีอาการ

Thiamine antagonists

Investigation

Lumbar puncture

- Albuminocytological dissociation 64%
 - elevated CSF protein
 - 50% within first 3 days
 - 90% at nadir
 - normal cell counts
- CSF cell counts >50 cells/μl
 - Leptomeningeal metatasis, lymphoma
 - CMV, early HIV infection, Poliomyelitis
 - Lyme, sarcoidosis

Brain 137, 33–43 (2014)

Antiganglioside antibodies

- No role in diagnosis except anti-GQ1b Ab

 low negative predictive value
 - can occur in other diseases

Electrodiagnosis study

Nerve conduction study

Electromyography

Panel 2: Neurophysiological criteria for AIDP, AMSAN, and AMAN

AIDP

At least one of the following in each of at least two nerves, or at least two of the following in one nerve if all others inexcitable and dCMAP>10% LLN: Motor conduction velocity <90% LLN (85% if dCMAP <50% LLN) Distal motor latency >110% ULN (>120% if dCMAP <100% LLN) pCMAP/dCMAP ratio <0.5 and dCMAP>20% LLN F-response latency >120% ULN

AMSAN*

None of the features of AIDP except one demyelinating feature allowed in one nerve if dCMAP <10% LLN Sensory action potential amplitudes <LLN

AMAN*

None of the features of AIDP except one demyelinating feature allowed in one nerve if dCMAP <10% LLN Sensory action potential amplitudes normal

Inexcitable

dCMAP absent in all nerves or present in only one nerve with dCMAP <10% LLN

dCMAP=compound muscle action potential amplitude after distal stimulation; pCMAP=compound muscle action potential amplitude after proximal stimulation; LLN=lower limit of normal. ULN=upper limit of normal. *In the original definitions the difference between AMSAN and AMAN proposed here is implied but not stipulated.

Lancet 2005

Diagnostic criteria

- Required features
 - progressive weakness in both arms and legs
 - areflexia or hyporeflexia
- Features supportive of diagnosis
 - progression of symptoms over days to 4 weeks
 - relative symmetry
 - mild sensory signs or symptoms
 - CN involvement, especially bilateral facial weakness
 - recovery beginning 2 to 4 weeks after progression ceases
 - autonomic dysfunction
 - absence of fever at onset

Diagnostic criteria

- CSF albuminocytologic dissociation
- NCS demyelinating features
- Features that rule out the diagnosis
 - Hexacarbon abuse
 - abnormal porphyrin metabolism
 - recent diphtheria infection
 - Lead intoxication
 - excluded poliomyelitis, botulism, hysterical paralysis, toxic neuropathy

Ann Neurol 1990

Red flags in diagnostic of GBS

- Clinical
 - fever at onset
 - bladder or bowel dysfunction at onset or persistent
 - sharp sensory level
 - persistent asymmetry of weakness
 - severe pulmonary dysfunction with limited limb weakness at onset
 - severe sensory signs with limited weakness at onset

- Lab
 - increased wbc in CSF (>50 /µl)
 - PMN in cerebrospinal fluid

Ann Neurol 1990

Treatment of GBS

GBS disability scale

- 0 Healthy state
- 1 Minor symptoms and capable of running
- 2 Able to walk 10m or more without assistance but unable to run
- 3 Able to walk 10m across an open space with help
- 4 Bedridden or chair bound
- 5 Requiring assisted ventilation for at least part of the day
- 6 Dead

Indication of IVIg or Plasmapheresis

Consider specific treatment with IVIg or PE Indications to start IVIg or PE:

- Severely affected patients (inability to walk unaided, GBS disability scale ≥3)^{91,97}
- Start IVIg preferably within first 2 weeks from onset: 0.4 g/kg for 5 days (unknown whether 1.0 g/kg for 2 days is superior); or 5× PE with total exchange volume of five plasma volumes in 2 weeks

Unknown whether IVIg is effective:

- Mildly affected patients (GBS disability scale ≤2) or MFS patients Indications for re-treatment with IVIg:
- Secondary deterioration after initial improvement or stabilisation (treatment-related fluctuation): treat with 0.4 g/kg for 5 days
- No proven effect of re-treatment with IVIg in patients who continue to worsen

IVIg vs.Plasmapheresis

IVIg

- Start improving < 1 wk
- Benefit 3-6 wk.
- Complication
 - headache, nausea
 - chills, myalgia
 - chemical meningitis
 - acute renal failure
 - anaphylaxis
 - hyper-viscocity syndrome

Plasmaphoresis

- Start improving within days
- Benefit 3-4 wk.
- Complication
 - infection
 - Thrombosis
 - Bleeding
 - Hypotension
 - cardiac arrhythmias
 - toxic reaction to the citrate used in procedure
Cochrane Database Syst Rev. 2006 Apr 19;(2):CD001446.

Corticosteroids for Guillain-Barré syndrome. Hughes RA¹, Swan AV, van Koningsveld R, van Doorn PA.

- Corticosteroid and non–corticosteroid
 - no difference in disability grade
 - less clinical improvement after 4 wks.
- IVMP alone no benefit or harm
- IVMP + IVIg
 - may hasten recovery but does not significantly affect the long-term outcome

Repeated dose of IVIg

Table 2 Differentiating characteristics of GBS, GBS-TRF, A-CIDP and CIDP ¹³⁰							
Characteristic	GBS	GBS-TRF	A-CIDP	CIDP			
Time to nadir	<2 weeks (maximum 4 weeks)	<2 weeks (maximum 4 weeks)	4–8 weeks, followed by progression with deteriorations	>8 weeks			
Disease course	Monophasic	1–2 deteriorations within 8 weeks	>2 deteriorations or deterioration after 8 weeks	Progressive, stepwise or fluctuating			
Severity	Highly variable between patients, ranging from mild symptoms to paralysis	Highly variable between patients, ranging from mild symptoms to paralysis	Mostly moderate	Mostly moderate, distal and proximal weakness			
Ventilator dependence	20–30%	20-30%	Almost never	Almost never			
Cranial nerve deficits	Often	Often	Sometimes	Sometimes			
Response to IVIg	Good	Good, with fluctuations	Variable	Good			
EMG/NCS*	Sometimes no classification possible at first EMG/NCS	Sometimes no classification possible at first EMG/NCS	Often demyelinating polyneuropathy at first EMG/NCS	Demyelination			
Treatment	IVig or plasma exchange	Repeat IVIg or plasma exchange	IVIg or plasma exchange, on confirmed diagnosis of CIDP consider also switch to prednisolone maintenance treatment	IVIg, prednisolone or plasma exchange			

Pharmacokinetics of IVIG

Table. Baseline Characteristics, Clinical Course, and Outcome in Quartiles of Patients Based on the Increase in Δ IgG Levels 2 Weeks After Treatment With a Standard High Dose of Intravenous Ig

Quartiles Based on AIgG at 2 wks			s	P
1	2	3	4	
<3.99	3.99-7.30	7.31-10.92	>10.92	
43	45	43	43	
12.5 (3.8)	10.8 (2.4)	10.4 (2.6)	10.4 (3.0)	
13.5 (4.2)	16.6 (2.7)	19.4 (2.8)	25.7 (4.8)	
52.1 (22.9)	49.2 (20.6)	51.8 (17.2)	45.4 (19.2)	0.20
23 (54%)	29 (64%)	24 (56%)	23 (54%)	0.79
71.0 (19.7)	74.4 (15.1)	75.2 (13.9)	75.2 (16.1)	0.24
9 (21%)	8 (18%)	11 (26%)	13 (31%)	0.19
17 (40%)	17 (38%)	13 (30%)	13 (31%)	0.31
4.0 (0.44)	3.8 (0.56)	3.7 (0.58)	3.7 (0.56)	0.007
39 (91%)	34 (76%)	29 (67%)	28 (65%)	0.004
35.8 (11.3)	39.0 (13.0)	42.7 (10.1)	43.7 (9.8)	< 0.001
25 (58%)	19 (42%)	14 (33%)	12 (28%)	0.003
4.6 (0.7)	4.0 (0.7)	3.9 (0.7)	4.0 (0.5)	< 0.001
25 (58%)	10 (22%)	7 (16%)	5 (12%)	< 0.001
23.0 (16.0)	32.9 (17.3)	37.9 (14.4)	39.1 (15.3)	< 0.001
36 (84%)	25 (56%)	20 (47%)	16 (37%)	< 0.001
22 (52%)	9 (23%)	5 (12%)	5 (13%)	< 0.001
12 (28%) ^b	11 (24%)°	1 (2%) ^d	3 (7%)°	0.001
	I <3.99	Quartiles Based of12<3.99	Quartiles Based on ΔIgG at 2 wk123<3.99	Quartiles Based on ΔIgG at 2 wks1234<3.99

Eculizumab

doi:10.1093/brain/awm316

Eculizumab prevents anti-ganglioside antibody-mediated neuropathy in a murine model

Susan K. Halstead,^{1,*} Femke M. P. Zitman,^{2,3,*} Peter D. Humphreys,¹ Kay Greenshields,¹ Jan J. Verschuuren,² Bart C. Jacobs,⁴ Russell P. Rother,⁵ Jaap J. Plomp^{2,3} and Hugh J. Willison¹

A Prospective, Multicenter, Randomized Phase II Study to Evaluate the Efficacy and Safety of Eculizumab in Patients with Guillain-Barré Syndrome (GBS): Protocol of Japanese Eculizumab Trial for GBS (JET-GBS)

Nobuko Yamaguchi¹, BSc; Sonoko Misawa², PhD, MD; Yasunori Sato³, PhD; Kengo Nagashima³, PhD; Kanako Katayama¹, MSc; Yukari Sekiguchi², PhD, MD; Yuta Iwai², PhD, MD; Hiroshi Amino², MD; Tomoki Suichi², MD; Takanori Yokota⁴, PhD, MD; Yoichiro Nishida⁴, PhD, MD; Nobuo Kohara⁵, PhD, MD; Koichi Hirata⁶, PhD, MD; Kazutoshi Nishiyama⁷, PhD, MD; Ichiro Yabe⁸, PhD, MD; Ken-Ichi Kaida⁹, PhD, MD; Norihiro Suzuki¹⁰, PhD, MD; Hiroyuki Nodera¹¹, MD; Shoji Tsuji¹², PhD, MD; Haruki Koike¹³, PhD, MD; Jun-Ichi Kira¹⁴, PhD, MD; Hideki Hanaoka¹, PhD, MD; Susumu Kusunoki¹⁵, PhD, MD; Satoshi Kuwabara², PhD, MD; JET-GBS Group^{4,5,6,7,8,9,10,11,12,14,15}

RESEARCH REPORT

Inhibition of complement in Guillain-Barré syndrome: the ICA-GBS study

Amy I. Davidson^{1,2}, Susan K. Halstead¹, John A. Goodfellow^{1,2}, Govind Chavada², Arup Mallik³, James Overell², Michael P. Lunn⁴, Alex McConnachie⁵, Pieter van Doorn⁶, and Hugh J. Willison^{1,2}

J Peripher Nerv Syst. 2017

Prognosis

- Most improvement occurs within the 1st yr. after onset
 - complete or almost complete recovery 62%
 - unable to walk unaided 9%
 - unable to run 17%
 - bedbound or ventilator dependent 4%
- Died 8% (all > 60)

The Erasmus GBS outcome score

	Categories	Score
Age at onset (years)	>60 41-60 ≤40	1 0-5 0
Diarrhoea (≤4 weeks)	Absence Presence	0 1
GBS disability score (at 2 weeks after entry)	0 or 1 2 3 4 5	1 2 3 4 5
Erasmus GBS outcome score		1-7
Table 3: The Erasmus GBS outcome score		

Figure: Predicted fraction of patients unable to walk independently at 6 months after randomisation on the basis of the Erasmus GBS outcome score (n=762)

Lancet Neurol 2007; 6: 589–94

Prognosis of Thai GBS patients

Unpublished data