Pathological Correlates of Electrodiagnostic Studies: The Special Use of the Nerve Biopsy

> P. James B. Dyck, M.D. JaNean Engelstad, H.T. Jane E. Norell, B.S. Peter J. Dyck, M.D.

Mayo Clinic, Rochester, MN

The Neurological Society of Thailand December 1, 2017

Disclosure

• Relevant financial relationships or off label usage: None

Learning Objective

- To evaluate the correlation between electrophysiological findings and nerve pathology.
- To introduce the concept of targeted fascicular nerve biopsy.

Should Nerve Biopsies be Done?

- Historically, nerve biopsies have been important in evaluation of neuropathies.
- Many experts advise that nerve biopsies should now be done infrequently and used mostly for research.
- What is the place (if any) for nerve biopsies in the modern clinical practice?

Role of Nerve Biopsy

- Drawbacks to nerve biopsy
 - invasive
 - may produce new symptoms and deficits
 - may be avoided by other tests
 - only views a small portion of the nervous system
 - does not evaluate motor problems well since it usually is a sensory nerve (sural)

Order of Evaluation

- When evaluating a peripheral neuropathy, the nerve biopsy comes last.
 - 1. History and neurological examination
 - 2. Nerve conduction and EMG
 - demyelinating vs. axonal
 - -level of involvement: root, plexus, peripheral nerve
 - 3. Laboratory tests (including CSF)
 - 4. Quantitative sensory and autonomic tests
 - 5. <u>Only after the above tests</u>, nerve biopsy is considered (invasive and side effects)

Information Gained by Nerve Biopsy

- Neuropathic information (axonal degeneration, segmental demyelination)
- Interstitial information (inflammation, amyloid, vessel changes, etc.)
- Most of the neuropathic data can be inferred from NCS and EMG.
- The most important information gained from a nerve biopsy is about the <u>interstitium</u> (little way of inferring this data from electrophysiology).

Information Gained by Nerve Biopsy

• Neuropathic

- axonal degeneration vs. segmental demyelination vs. other
- density of nerve fibers
- size of fibers involved: large myelinated, small myelinated or unmyelinated
- spatial pattern: diffuse, focal or multifocal

Information Gained by Nerve Biopsy

- Interstitial Pathology
 - inflammatory demyelinating (AIDP, CIDP)
 - large vessel necrotizing vasculitis
 - small vessel vasculitis (microvasculitis)
 - granuloma
 - ischemic injury (perineurial thickening, neovascularization, injury neuroma)
 - infiltrative pathology (amyloidosis, lymphoma, tumor, etc.)
 - infectious (leprosy, etc.)

Leprosy (acid fast bacilli, Fite stain)

From: Dyck et al, Greenfield's Neuropathology 7th ed., 2002

Site of Nerve Biopsy

- Selecting the appropriate site is the most important first step.
- If an unaffected nerve is biopsied, a diagnosis probably cannot be made.
- For symmetric sensorimotor polyneuropathy, a sural may be most appropriate.

Site of Nerve Biopsy

- Whole vs. fascicular nerve
- Cutaneous (sensory) vs. mixed (motor and sensory)
- Most biopsies are taken from a whole distal cutaneous nerve since most neuropathies are length-dependent.
- With improved imaging (MRI), fascicular nerve biopsies from focal nerve lesions are now possible.

Specific Pathological Findings

- Some conditions have stereotypic pathological patterns
 - Polyglucosan body disease
 - Axonal spheroids
 - neuroaxonal dystrophy
 - hexacarbon toxicity
 - acrylamide toxicity
 - Giant axonal dystrophy
 - Lysosomal enzyme related alterations
 - MLD
 - Fabry
 - Tangier

Polyglucosan Disease - Adult Onset

From: Klein et al, Muscle & Nerve, 2004

Giant Axonal Neuropathy

From: Dyck et al, Greenfield's Neuropathology 7th ed., 2002

Giant Axonal Neuropathy

From: Dyck, Peripheral Neuropathy, 2nd ed., 1984

Metachromatic Leukodystrophy

From: Dyck, New developments in electromyography and clinical neurophysiology, 1973

Fabry Disease

From: Ohnishi & Dyck, Archives of Neurology, 1974

Tangier Disease

From: Dyck et al, Journal of Neuropathology & Experimental Neurology, 1978

Comparing NCS/EMG and Nerve Biopsy

NCS/EMG

- provides information about largest axons only (Aαβ fibers), and not about the other fiber classes (gamma, delta, drC and sympathetic C)
- provides information about a group of fibers (a volley) and <u>not</u> about individual fibers
- can be performed on many nerves throughout the body large sampling
- studies are easily repeated to assess disease progression

Comparing NCS/EMG and Nerve Biopsy

Nerve Biopsy

- provides information about all classes of nerve fibers (large and small myelinated, unmyelinated)
- provides information about all cells (not just neurons) and sub-cellular structure
- provides information about disconnected fibers and sprouts
- limited to a small anatomical region
- not easily repeatable

Utility of Nerve Biopsy

- Carefully selected cases
- Properly processed without artifact
- Sufficient preparations available
 - teased (most important in judging pathology for individual fibers)
 - paraffin
 - epoxy
 - immunohistochemistry
 - electron microscopy
- Access to other specialized pathologists (hematopathologists, neuropathologists, etc.)

Teased Fiber Conditions

- A: normal
- B: myelin wrinkling
- C: segmental demyelination
- D: segmental demyelination and remyelination
- E: axonal degeneration
- F: remyelination
- G: tomacula
- H: regeneration after axonal degeneration

From: Dyck et al, Neurology, 1975

Teased Fibers - Condition A (normal)

From: Dyck et al, Greenfield's Neuropathology 7th ed., 2002

Teased Fibers - Condition C and D (segmental demyelination and remyelination)

From: Dyck et al, Peripheral Neuropathy 4th ed., 2005

Teased Fibers - Condition E (axonal degeneration)

And and a second s

From: Dyck et al, Greenfield's Neuropathology 7th ed., 2002

Teased Fibers - Condition G (tomaculous)

From: Dyck et al, Greenfield's Neuropathology 7th ed., 2002

Normal Nerve (bimodal distribution) epoxy section, methylene blue

Healthy Subject

Nerve Conduction and Underlying Fiber Alteration (3 patterns)

- Low CV and normal CMAP/SNAP
 - segmental demyelination ± remyelination
 - remyelination
 - loss of large fibers
 - fiber regeneration
- Normal CV and low CMAP/SNAP
 - decreased number of large fibers
 - axonal degeneration
- Low CV and low CMAP/SNAP
 - mixed demyelination and axonal degeneration
 - fiber regeneration
 - loss of large fibers

Correlation of Nerve Conduction Abnormalities and Underlying Nerve Fiber Alteration

 Low conduction velocities (normal amplitudes)
– demyelinating conditions
– loss of large fibers

Segmental Demyelination

- Inherited
 - usually uniform slowing of CVs
 - conduction block is uncommon (exception HNPP)
- Acquired
 - temporal dispersion (unequal slowing of CVs)
 - conduction more block common
 - F-waves especially prolonged (proximal slowing)

CMT-1A (HMSN-IA): uniform slowing 49 F (mother)

MM	IC Reco	ord			# 4	Data	a on	Lo	cal	На	ard	Dis	k	Uli	nar.L	•		×.	0 9 :	22:34
S S	witch: tim: 1	STOP	Rate	:	÷	0.5	Hz	Lev	el:	5	3.3	mA	Dur	r: C).1 m	s Sing	le			
ſ										5	ms	Ste	p: '	1		Avera	ge: Of	f Re	ctify	Off
		÷	• /		·	·	•	•		•										
A			_∔∕	· 1		·			94	+ <u>.</u> 1	mA									
1					·															
		_										Rec	ordi	ing	Site	: Adm	1			
A		. \							53	з. з	mA	CTI	MI II		CITE		DUR	AMP	AREA	TEMP
2	т	Ń	-		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~					5	mν	511		.05	STIE	ms 45.4	ms 7 4	mV	mVms	°C
			•		•	•		•		•		HI:				15.4	7.4	7 200	20.20	33.5
		•	·	٠	·		·	•		•		HZ.	R		~~ w	5.0	1.0	1.200	27.00	55.0
3		•	•	٠	·	•	·	·		5	mν	A4 ·	Unr	her	Arm					
	,	,	·	•	·	•	·	•		·		A5 :	Sur	orad	clavi					
	3		ł	•	•	٠	•			·		A6:	r							
A				•		•		•				L							J	.1
4						÷				.	mv									
		,				•								1	SEGME	NT		DIST	DIFF	CV m/s
A											2	Elb	ow-I	Wri	st			263	9.6	27
5									5	5	m∨	Wri	st-f	adm				68	5.8	
a.				•		•	•	•				В.	Elbo	ow-1	Wrist	_				
P		•			·	,				·		Upp	er f	Arm [.]	-Wris	t				
6				•	•	·	÷			5	mV	Sup	гас Иг:	iav	icula	r-Wris	τ			
-			•	,	·	·	TE	= MD -	22	• • •	°r	HO-	wrts	51	1					
								_1117 .	55	. 0	0									

CMT-1A (HMSN-IA): uniform slowing 67 F (grandmother)

MNC Record # 4 Moved G1									Ulnar.L 1									
Switch: N-R Rate:Non-Recurrent Level:								eve	l :	0.0	mA Dur: 0.5 ms Single							
											Step: 2 Average: Off Rectify: Off							
		,			<i>[</i>				5	ms	incluge off heating. off							
A					1.	١.			97.3	3mA								
1		.	~			Ì			2	m∨								
		$/\cdot$		• •							Recording Site : ADM							
	•	/ · \	•	·	•	. Ŭ		•	•									
2	/ +) (•		· · · · · · · · · · · · · · · · · · ·		~	100)mA mV	STIMULUS SITE LAT1 DUR AMP AREA TEMP							
-			\sim	/.			÷	·			A1: Elbow 21.3 9.1 4.271 20.95 32.3							
			<u>.</u>	•	•		•				A2: Wrist 5.6 8.3 4.937 20.91 32.3							
A	,										A3: B. Elbow							
3									2	m∨	A4: Upper Arm							
											A5: Supraclavi							
A											A6:							
4	,			•	·	•		•	2	m∨								
			•	·	·		•	•			SECMENT DIST DIFF CV							
0				•					•		SEONENTmmmsm/sFlbow-Wrist29015710							
H 5	,		,						. 2	mV	Wrist-ADM 64 5 6							
					,						B Elbow-Wrist							
	ė										Upper Arm-Wrist							
A			,	÷							Supraclavicular-Wrist							
6									2	m∨	A6-Wrist							
							TEM	P: 3	2.3	°C								
									1.1									

CMT-1A (HMSN-IA): uniform slowing 28 F (daughter)

MN	IC Reco	ord			# 3	Data	a on	Loc	ali	Ha	гd	Disł	< 1	Ulna	ar.L				14 :	31:01
S.	witch: tim: 1	sто	P Ra	ate:		0.5	Hz	Lev	el:	60	. 4	mA	Dur	: 0.	1 m	s Sing	le			
ſ									C	5 07		Step	o: 2			Avera	ge: Of	f Re	ctify	: Off
				\sim																
A					\.				60.	4π	A									
1	••••••			•	K.		ز		5	5 п	nV									
-						· .	÷					_								
		-										Reco	rdir	ng S	site	: Adm				
	/		$\langle \cdot \cdot \rangle$						70								······			
2	_	•	X.			.	<u>.</u>	·····•	5	5 m		STI	MULU	IS S	ITE	LAT1 ms	DUR ms		AREA mVms	
2				<i></i> .			·					A1:	Elb	OW		15.0	8.4	7.148	33.51	31.8
												A2 ·	Wri	st		57	7.8	7.812	34.34	131.6
	,	•	•				•		•			02.				5.7	1.0			
H							2	•		5 n		п	D. I) w)					
3						÷						H4 :	Upp	er	Irm					
												A5:	Sup	rac	lavi					
		•	•		•		•	·	•			A6:								
н						•	·			_										
4									-	> п				-						
														S	EGME	NT		DIST	DIFF	CV m/s
		·	·	•	٠		•	•	•			Flb	w-W	ris	ł			277	9.3	30
H		•			•		•					Mr. i	-+ 0		•			62	5 7	
5									-				э (~ П - , ,	ויוט					5.7	
			12									В. I		W - W I	rist					
	·	•	•	•	•	•	•	•	•		Í	Uppe	er A	rm-I	ris	t				
A						•						Sup	racl	avi	cula	r-Wris	t			
6									5	5 r	n∨	A6-1	Vris	t						
	ė.					•	TE	MP:	31.	8 °	'c									
1																				

CMT-1A (HMSN-IA)

Fig. 4. Conduction velocity of motor fibers of the ulnar nerve between elbow and wrist in relation to age in the kinship studied. Each point represents 1 member of the family. The dotted line represents the lower limits of normal conduction velocity found in other studies in this laboratory. Symbols above this line represent persons with normal, those below, persons with low conduction velocities. All of the persons in group 1 (Charcot-Marie-Tooth disease diagnosed on clinical examination) had low values. Of the persons in group 2 (normal on clinical examination) only a 4-year-old boy and a 1½-year-old girl had low values. Five of 14 persons in group 3 (equivocal findings on clinical examination) had low conduction velocities.

From: Dyck & Lambert et al, Neurology, 1963
CMT-1A (HMSN-IA)

From: Dyck et al, Mayo Clinic Proc., 1970

CMT-1A (HMSN-IA) (generalized pattern)

From: Dyck et al, Greenfield's Neuropathology 7th ed., 2002

Hypertrophic Inherited Neuropathy

Fig. 3. Spectra of myelinated and unmyelinated fibers of healthy sural nerve of 19-year-old man (Top), of sural nerve of 22-year-old man with HN-CMT (*Middle*), and of sural nerve of 21-year-old woman with HN-DS (*Bottom*). Note decrease in numbers and alteration in spectrum of myelinated fibers of nerve from patients. Number and spectrum of unmyelinated fibers of sural nerve of patient with HN-CMT are normal. Number of unmyelinated fibers in nerve of patient with HN-DS is slightly above normal and peak is somewhat displaced to smaller size categories.

From: Dyck et al, Mayo Clinic Proc., 1970

Healthy 29 M

CMT-1A (HMSN-IA) 22 M

Dejerine-Sottas (HMSN-III) 21 F

Dejerine-Sottas (HMSN-III)

From: Dyck & Lambert, Mayo Clinic Proc., 1971

Dejerine-Sottas (HMSN-III) Enlarged Cauda Equina

Dejerine-Sottas (HMSN-III) Enlarged Sciatic Nerve

HMSN-III (generalized pattern)

From: Dyck et al, Greenfield's Neuropathology 7th ed., 2002

Onion Bulb - Demyelinated Axon (Dejerine-Sottas, HMSN-III)

From: Dyck & Gomez, Mayo Clinic Proc., 1968

CIDP, 55 M temporal dispersion and CB

CIDP, 55 M prolonged F latency

CIDP, 55 M temporal dispersion and CB

Switch: STOP Rate: 0.5 Hz Level: 100 mA Dur: 0.3 ms Single Stim: 1 5 ms Step: 4 Rverage: Off Rectify: Trace Delay: 0 ms 0 ms Birth Date: - - Male 1780m Recording Site : ADM 94, 1mR Recording Site : ADM STIMULUS SITE - - - - A - - - - - A - - - - - - A - - - - - - - - A - <th>MNC RECO</th> <th>RD</th> <th></th> <th># 4</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>Ulnar.R 15:30:48</th>	MNC RECO	RD		# 4						Ulnar.R 15:30:48
Step: 4 Hoverage: 0+1 Rectify: Step: 4 I Hoverage: 0+1 Rectify: Birth Date: 0 0 Birth Date: 15 NOV 96 Age:YD Recording Site : ADM Recording Site : ADM STIMULUS SITE LATI DUR AMP AND ADDES Birth Date: 15 NOV 96 Age:YD Recording Site : ADM STIMULUS SITE LATI DUR AMP AND ADDES A 63.5mA A 63.5mA A 63.5mA A 63.5mA A 63.5mA A 69.0mA A 69.0mA A 69.0mA A 69.0mA A 69.0mA A 1000 H B 14.01.907 11.43 A 900 MA B SEGMENT A 190 MA B 190 M B 190 M B 190 M <td>Switch: Stim: 1</td> <td>STOP</td> <td>Rate:</td> <td></td> <td>0.5</td> <td>Hz</td> <td>Leve</td> <td>el:</td> <td>100</td> <td>mA Dur: 0.3 ms Single</td>	Switch: Stim: 1	STOP	Rate:		0.5	Hz	Leve	el:	100	mA Dur: 0.3 ms Single
A	:	÷	· ·		•	•	÷	5	ms	Step: 4 [Average: Off] Rectify: Off Trace Delay: 0 ms Birth Date: Male 178cm Exam. Date: 15 NOV 96 Age:YD
A	A ·	. +	·/~	, T	~	•	:-	94 <u>.</u> 2	1 mA mV	Recording Site : ADM
A A3: B. Elbow 10.8 14.0 2.039 13.24 A3 A4: Upper Arm 18.0 14.0 1.907 11.43 A4 A3: B. Elbow A3: B. Elbow 14.0 1.907 11.43 A4 A5: Supraclavi B5: Supraclavi B5: Supraclavi B5: Supraclavi A4 A5: Supraclavi B5: Supraclavi B5: Supraclavi B5: Supraclavi A4 A5: Supraclavi B5: Supraclavi B5: Supraclavi B5: Supraclavi B5: Supraclavi B5: Supraclavi			· · ·	•			•	63. 2	5mA mV	STIMULUS SITE LAT1 DUR AMP ARES TEMP A1: E1bow 13.9 13.5 1.975 13.56 34.5 A2: Wrist 2.6 6.8 5.626 24.10 34.3
A I I I I Image: Segment Image: Segment Image: Segment Image: Segment Image: Segment Image: Segment Image: Segment Image: Segment Image: Segment Image: Segment Image: Segment Image: Segment Image: Segment Image: Segment Image: Segment Image: Segment Image: Segment Image: Segment Image: Segment Image: Segment Image: Segment Image: Segment Image: Segment Image: Segment Image: Segment Image: Segment Image: Segment Image: Segment Image: Segment Image: Segment Image: Segment Image: Segment Image: Segment Image: Segment Image: Segment Image: Segment Image: Segment Image: Segment Image: Segment Image: Segment Image: Segment Image: Segment Image: Segment Image: Segment Image: Segment Image: Segment Image: Segment Image: Segment Image: Segment Image: Segment Image: Segment Image: Segment Image: Segment Image: Segment Image: Segment Image: Segment Image: Segment Image: Segment Image: Segment Image: Segment Image: Segment Image: Segment Image: Segment	A		~-	· L				69.0 2	0 mA mV	A3: B. Elbow 10.8 14.0 2.039 13.24 34.7 A4: Upper Arm 18.0 14.0 1.907 11.43 34.8 A5: Supraclavi
Elbow-Wrist 362 11.3	A	•	· · · ·	· ·⁄				1.0	0 m A mV	SEGMENT DIST DIFF CV
A	A	•	· ·		•	•		÷		Elbow-Wrist36211.332Wrist-ADM652.6B. Elbow-Wrist2418.229
5 2 mV Upper Arm-Wrist 454 15.4 Supraclavicular-Wrist 454 15.4	5	•	· ·	:	:	тс		2 711 0	mV oc	Upper Arm-Wrist 454 15.4 29 Supraclavicular-Wrist

CIDP, 55 M

							CI	DP	P, 51 M
				1.00					
LINK F	REFLEX	RECO	RD #	1					Eressinal Bours 15:11:5
witch	I N-R	Rate	Non-R	ecu	rrent	Lev	vel:	45.	5 mA Dur: 0.1 ms Single
									Trace: 4/ 4 Average: Off Rectify: Off Trace Delay: 0 ms Distance:
									Stim: Supraorbital Birth Date: Male 180 cm
Stim F	Ipsi 1-Lat	Contr R1-La ms	a Ips t R2-La ms	at RS	ontra 2-Lat ms				Exam. Date: 20 JAN 76 Age 1 D
.eft light	20.0		36.	6	38.8				
roupi	1 511	m: Le	ft Re	• •	LPSI	Sh	anne	! 1	Group: 3 Stim: Right Rec! Contra Channel
roup!	2 511	m: Le	ft Re	01 (Jontra	<u> </u>	10	ms	10/m
	•	•	•	*	2.	٠			
•		4	83 B.	•	•	•	500	υV	200
	38	X 33	•a	20					43. 5m
10.00	•	ði 8	• •	٠		•	•		45. 5ml
•		8 0	•	•	•	3 9	*		
•		¥ 0	6) (A)		•		500	uV	20 ⁰ u
5.00			•5 (P*)		10			221.72	
			•	٠	8	•			
•			•	1	2	5 4 3	3¥		- VVY Storal -3:3m
		×	•				18		· · · · · · · · · · · · · · · · · · ·
•				.*			~ · ·		

From: Lambert & Dyck, Peripheral Neuropathy 1st ed., 1975

From: Dyck et al, Mayo Clinic Proc., 1975

Onion Bulb Patterns

CMT-1A (HMSN-IA) (generalized pattern)

Inherited Neuropathy (focal pattern)

HMSN-III (generalized pattern)

CIDP (mixed pattern)

From: Dyck et al, Greenfield's Neuropathology 7th ed., 2002

CIDP (mixed pattern)

Pattern of Onion Bulbs

n=131	Acquired Neuropathy	Inherited Neuropathy	Significance
Generalized OB	17	34	p < 0.0001
Focal OB	17	9	NS
Mixed OB	48	6	p < 0.0001

- Mixed OB are highly suggestive of acquired demyelinating neuropathy and may explain temporal dispersion.
- Generalized OB may explain uniform slowing in inherited neuropathy.

An outbreak of neurological autoimmunity with polyradiculoneuropathy in workers exposed to aerosolised porcine neural tissue: a descriptive study

Daniel H Lachance, Vanda A Lennon, Sean J Pittock, Jennifer A Tracy, Karl N Krecke, Kimberly K Amrami, Eric M Poeschla, Robert Orenstein, Bernd W Scheithauer, James J Sejvar, Stacy Holzbauer, Aaron S DeVries, P James B Dyck

Lancet Neurol 2010;9:55-66

30 M

Right Tibial Study Recording site: Abductor hallucis

Stimulus Site	Lat 1 ms	Dur ms	Amp mV	CV m/s
A1: Knee	21.3	23.5	2.0	45
A2: Ankle	13.2	21.9	2.0	

30 M

Right Tibial F-Wave Study Recording site: Abductor hallucis

51 F Right Trigeminal Study Recording site: Supraorbital

Stim Side	Ipsi	Ipsi	Contra
	R1-Lat ms	R2-Lat ms	R2-Lat ms
Right	28.4	44.8	44.2

Multifocal Motor Neuropathy, 51 F conduction block

	eco	rd			# 1	mo	ved g	1		No.		Media	n.L				08	:22:55
witch:	ST	OP	Ra	ite:		0.5	Hz	Leve	100	mΑ	Dur	0.2 m	IS	Single		-		
									2 ms	Ste	D:	4		Average	: Off	Rec	tify: Of	f
																		6.1.0
																		2
			$\langle \rangle$		1													
		•	(\cdot)			_	<u> </u>		100mA									
			╱╋╌	Tin	~	~.	-		1 mV	Rec	ording	g Site		: APB	6			
		· /	•	\ <i>[</i> -	/ ·	•	•		•									
		.		♥.	<i>\</i> .	. •			·	Stir	nulus	Site		Lat1	Dur	Amp	Area	Temp
		.	÷		.\					A 1.	Flbo	N		60	77	04	14	33.3
		./		2	. \				79.2mA	A2.	Wriet	••		23	84	6.8	21.3	33.3
V	+	\sim				١.		<u> </u>	1 mV	A3.	Flho			2.0	0.1	0.0		
					70	-			12	A4	Wrist							
•		•		•		•25								_lt				
		·	•	•	ě		•											
					•	8	٠	٠	1 mV									
							•2		•							Dist	Diff	cv
					÷				3. (*)			Se	gm	ent		mm	ms	m/s
									3 4 9	Elbo	w-W	rist				210	3.7	57
		•			8		5 B			Wri	st-AP	B				65	2.3	
	61							•	1 mV	Wri	st(U)-	-APB						
-		·	(4 1)			•	•		• •	Elb	U)wc)-Wrist	t(U))				
			•				÷		22 4 90									
								emp:	33.1 C]								
	NC R witch: im: 1	NC Reco	NC Record	NC Record	NC Record witch: STOP Rate:	NC Record #1	NC Record #1 mo witch: STOP him: 1 0.5	NC Record #1 moved g	NC Record #1 moved g1 witch: STOP Rate: 0.5 Hz Leve	NC Record #1 moved g1 witch: STOP Rate: 0.5 Hz Level: 100 2 ms 100mA 1 mV 1 mV 1 mV 1 mV 1 mV	NC Record #1 moved g1 witch: STOP Rate: 0.5 Hz Level: 100 mA 2 ms Step 100mA 1 mV 1 mV 1 mV 1 mV 1 mV Elbo Wris Elbo Wris Elbo	NC Record #1 moved g1 witch: STOP Rate: 0.5 Hz Level: 100 mA Dur 2 ms Step: 100mA 1 mV Recording 79.2mA 1 mV 79.2mA 1 mV A1: Elbow A2: Wrist A3: Elbow A4: Wrist 1 mV Elbow-W Wrist(U) Elbow(U	NC Record #1 moved g1 Media witch: STOP Rate: 0.5 Hz Level: 100 mA Dur: 0.2 m 2 ms Step: 4 100mA 1 mV Recording Site 1 mV 1 mV Stimulus Site A1: Elbow 1 mV 1 mV Se Elbow-Wrist Wrist(U) Modelia 1 mV Temp: 33.1 °C	NC Record #1 moved g1 Median.L witch: STOP Rate: 0.5 Hz Level: 100 mA Dur: 0.2 ms 2 ms Step: 4 100 mA Important Recording Site 1 mv 1 mv 1 mv Stimulus Site A1: Elbow 2 Wrist 1 mv 1 mv A2: Wrist 3 Elbow(U) 1 mv Segm Elbow-Wrist 1 mv Temp: 33.1 °C Segm	NC Record #1 moved g1 Median.L witch: STOP Rate: 0.5 Hz Level: 100 mA Dur: 0.2 ms Single 2 ms 2 ms Step: 4 Average 1 mV 1 mV Recording Site : APB 1 mV 1 mV 1 mV Stimulus Site Levit 1 mV 1 mV 1 mV 6.0 2 Wrist 2.3 3: Elbow(U) 4: Wrist(U) 1 mV 1 mV Segment Elbow(U) 4: Wrist(U) 1 mV Segment Elbow(U)-Wrist Wrist(U)-APB Elbow(U)-Wrist(U) Temp: 33.1°C Stimulus Site Stimulus	NC Record #1 moved g1 Median.L Mitch: STOP Rate: 0.5 Hz Level: 100 mA Dur: 0.2 ms Single 2 ms 2 ms Step: 4 Average: Off 100mA 1 mV 1 mV Recording Site : APB 100mA 1 mV 1 mV 6.0 7.7 1 mV 1 mV 3.1 mV A3: Elbow(U) A4: Wrist(U) 1 mV 1 mV 1 mV Segment Elbow-Wrist 1 mV 1 mV 1 mV Segment Elbow(U) A4: Wrist(U) 1 mV 1 mV Segment Elbow(U)	NC Record #1 moved g1 Median.L Mitch: STOP Rate: 0.5 Hz Level: 100 mA Dur: 0.2 ms Single 2 ms Step: 4 Average: Off Rec 100mA 1 mV Recording Site : APB 1 mV 1 mV Stimulus Site Lest1 Dur: Amy 79.2mA 1 mV A1: Elbow 6.0 7.7 0.4 A1: mV 2: Wrist 2.3 8.4 6.8 4: Wrist(U) 1 mV Segment Diff 210 Metion: 1 mV 1 mV Stimulus Site 2.3 8.4 6.8 1 mV 1 mV 1 mV Segment Diff 210 Wrist(U) 1 mV 1 mV Segment Diff 65 Wrist(U)-APB Elbow(U)-Wrist(U) 65 65 65	NC Record #1 moved g1 Median.L 08 witch: STOP Rate: 0.5 Hz Level: 100 mA Dur: 0.2 ms Single 2 ms 2 ms Step: 4 Average: Off Rectify: Of 1 00 mA 1 mV 1 mV Recording Site : APB 1 mV 1 mV 5timulus Site Last1 mus Amy MVerage: Off Average: Off

Multifocal Motor Neuropathy, 51 F conduction block

MNC Record	#3 Data on Loca	I Hard Dis	sk	М	ediar	n.L	,		08	:25:55
Switch: N-R Rate:Non-	-Recurrent Lev	el: 100	mA Du	ur:	1 ms	s Single	•			
		2 ms	Step:	3		Average	: Off	Rec	tify: Of	f
	· · · · · ·									6.1.0
		85.5mA	Recordi	ing Site	3	: APE	3			
1	N		Stimul	us Site		Lat1 ms	Dur ms	Amp	Area mVms	Temp
A		100mA	A1: SIT	E 1		4.0	6.8	6.8	20.9	33.1
2		<u>2-m√</u>	A2: SIT	Έ2		4.6	7.1	6.7	21.1	33.0
Δ		100-00	A3: SIT	E 3		6.0	2.9	1.1	1.4	32.9
	<u></u>	2 mV	A4: SIT	Έ4						
0			A5: SIT	Έ5						
Α			A6: SIT	Έ6		8		4		
4		2 mv	A7: SIT	Έ7						
A			A8: SIT	E 8						
5		2 mV			Se	ament			Dist	Diff
	• • • •		SITE 1	APR		9			64	4 0
		2 mV	SITE 2	SITE	1				85	0.6
			SITE 3	-SITE :	2				111	14
A			SITE 4	SITE 1	2					
7		2 mV	SITE 5		л Л					
	•••••	•	SITE		т 5					4
		2 mV	SITE 7	SITE	í A					
	<u>.</u> .	00.000	SITE 9	SITE	7	,				
	I emp:	32.8°C	SIL 0	-0112					I]

Multifocal Motor Neuropathy, 53 M conduction block

MN	NC REC	COR	D			# 2							Tibial.L 13:29:14	4
S	witch tim:	: 9	STOP	Ra	te:		0.5	Hz	Lev	el:	5	0.2	2 mA Dur: 0.5 ms Single	٦
											_		Step: 2 Average: Off Rectify: Off	
	•			÷	•							ms	Trace Delay: 0 ms Birth Date: Male 173cm Exam. Date: 17 JAN 97 Age:YD	
	•		•	•	٠	•	•	•	٠		•			
	•		•	·		•	•	•						
	•								•					
A			· · · · ·	+	\sim	\sim	<u> </u>	~··~	<u> </u>	1	200	m⊟ mV	Recording Site : AH	
ʻ	·		•	•	٠	•	•	•	•		•			
			•			•		•	•		•			_
ſ	•	7			•		·	٠	•		•		STIMULUS SITE LATI DUR AMP ARES TEM	
		1	{.	•	•	•	•	•	·		•		H1: Knee 16.9 20.90.9645.25632.0	
	•	1	1.	·	•	·	•	•	•		•			2
		1	\.	•	•	•	·	•	•		•			
	•	1	ŀ	·	•	•	·	•	•		•			
	./	(ŀ	•	•		•				•			
A	L+			•			<u></u>			51	:0	mA		-
2			$\frac{1}{2}$			•		•	·			mv		Н
	•		1/	•	•	·		•	•		•		Ankle-AH 82 4.8	
			.0	•	•		•		•		•			
			•	•	•	•	•	ŤE	MP:	32.	5	°C		

Multifocal Motor Neuropathy

From: Taylor & PJB Dyck, Neuropathology & Experimental Neurology, 2004

Multifocal Motor Neuropathy (multifocal fiber loss)

From: Taylor & PJB Dyck, Neuropathology & Experimental Neurology, 2004

Minimal Perivascular Inflammation in MMN

Taylor et al, 2004

HNPP, 61 M

Gui	tchi	STOP	In			0 5	11.11		1. 5	1 0	-0.0.	Teres	1			0-0-0-0
Sti	m: 1	510	Ka	te:		0.5	HZL	.eve	1: 5	1.0	MH DUR: U.Z M	SISING	le			
1			12		_			_	5	ms	Step: 2	Averag	e: 01	f Red	tify:	0 f f
	191	8		0	20	5 1 3		*	•		Birth Date: - Exam. Date: 1	MAY 9	Ma 7 Ag	1e 18 e:)	5cm D	
		10	95	9 9	· 7											
	٠	×			·/	1.		٠								
1			•		+	X		•	47,9	mA	Recording Site	: EDB				
	•		•2	.C#												
	24	· /	1.	2.4	٠		(• 1)	*	•		STIMULUS SITE	LAT1 ms	DUR	AMP	AREA	TEM
		· /	1.	3 3		¥3	•	×.,	7.8 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -		A1: Knee	24.2	5.8	4.011	10.80	30.
	14	-¥	K	~		-	_	- 50	45.5	mU	A2: Ankle	10.1	4.8	4.568	10.85	30.
			. \	1.	•		•				A3: Fibula	1.515.5515	12/5	AN WERE	1006228	
	•			٠			•	•	•		A4: Malleolus					
			•	•	٠		•	•	•							
		•						٠								
	2002					•			2	mV						
											SEGME	NT		DIST	DIFF	CV m/s
	1.000	•		0.00	ð.	•	557		20	1	Knee-Ankle			413	14.1	29
	803	() •			(*	*	2203	3 5	•	- 8	Ankle-EDB			88	10.1	
			*				383		2	mV	Fibula-Ankle			1765	WARAS AN	
		8	*		3 9	*		\times	X		Malleolus-EDB					
			×				TEN	n: ·	z0 0	20						

HNPP, 61 M

Contraction	nLou	CTOP	In	1993	-			-				-		1-				10.21
Stil	n: 1	STUP	Rat	e:		0.5	HzL	eve	el: 6	2.8	mA	Dur:	0.1 1	ns Sing	le			
-				_			_	_	-	1	Ste	p: 4		Averag	e: Of	f Re	ctify	: Off
	1		(.	944 - 1 19 <u>11 - 1</u>		1				ms	Bir	ce De th Da n. Da	lay: te: te:	0 ms 1 MAY 9	Ma 7 Ag	1e 16 e:\	35cm /D	
		•		\triangle			•	•										
	. 7	1.		$ \cdot \rangle$	· ·	10												
	-+	1-	-+		1.	•			74,5	imA	Reco	ordin	g Site	: ADM				
	.1	1		18	1				-	m~								
1		1.									STI	MULUS	S SITE	LAT1 ms	DUR	AMP	AREA	TEM
	1		Λ	161	7.5	122			62.0	mA	A1:	Elbo	W	17.3	6.5	4.871	18.81	32.
	T	. 1	1					121	2	mU	A2:	Wris	t	5.5	6.1	9.089	29.37	32.1
		· Y	A		* 3	. *3	*	•	18		A3:	B. E	Ibow	11.5	6.6	7.826	27.62	32.
	2.5	. [V. 1		•	888	*	•	12		A4:	Uppe	r Arm	20.6	6.9	4.792	18.44	32.0
				1 .	•				94, 1	mFl	A5:	Supr	aclav					
			1040	1.	1.				2	mU								
				-1	1													
		.8		1	./	2010		•						- Andrews				
				-+	• 1	1.		-	24,1	mV			SEGM	ENT		DIST	DIFF	CV m/s
	30			94		Ý		•			Elbo	w-Wr	ist			327	11.8	28
	(* .)	*	8	9X	•				19		Wris	st-AD	M			67	5.5	
						020	~	20	-04		B. E	Elbow	Wrist	t		222	6.0	37
						11.0			2	mV	UPP	er Ar	m-Wris	st		468	15.1	31
			•2	8 4		2013	14	•	1		Sup	racla	vicula	ar-Wris	t			
			•	4		5.00	TEMP		31.9	20						1 I		

HNPP, 61 M

Inching of ulnar nerve across the elbow

4:06	08:1			R	ULNHR.	a la companya da companya d		73	UN.=27	EPIC	# 3			RD	C RECO
			le	Sing	: 0.2 ms	mA Du	: 34.5	eve	nt Le	ecurre	on-Re	te:No	Rat	N-R	itch:
Off	tify	f Rec	e: Of	Averag		Step:		_				Linker	-		
				0 ms	elay:	Trace	5 ms								
	D	e:Y	7 Ag	MAY 9	ate: -	Exam.			•		¥3	•		•	
								•			•			•	•
		IST)	DM (WR)	: A	ng Site	Record	1, 8mA		÷ 74	34	÷				
TEMP	AREA		DUR	LAT1	IS SITE	STIMU	2 mV	1.1			-		1.27		860
31.8	27.34	8,009	6.5	11.2	F 1	A1: ST	10 8mB								
31.8	27.91	8 100	6.6	11.7	F 2	82: ST	2 mV	•	ð 1	•	•			٠	
31 8	25 40	7 318	6.4	12 5	5 3	03. 01	•	٠					785		
21 0	23. 10	C 117	6.0	17 5		04. 01	86, 1mA		¥ (4	260	10	1		8.0	(1)
71 0	10 01	5 726	6.0	16.7		05. 01	2 mV					17	11 18	1	
21.0	19.91	5. 320	0.0	10./		105: 51			8 S	201		N.N	11/1	. 1	8 4 67
51.7	19.41	5.040	0.5	17.5	ED	HD: 51	2 mV	ŧ		•	1.	M/·)	II V	· //	۲
					£ /	H/: 51					N.		4 4		
-					E 8	H8: SI	53, 3mA	2		-	d St	SM	90. jez 21		
DIFF	DIST			MENT	SEC		2 mV					yes			
11.2	198			RIST)		SITE 1		5		2000	÷.		19	3	1.0
0.5	223				SITE 1	STTE 2	2 mU	•	2	5322		2		2	
0.8	252				SITE 2	SITE				200				22	
1 0	282				CITE Z	CITE L			-						
3 0	300					CITE E	2 mV	02	Ø. 1	100	18.	225	21	08	10
0.0	775					OTTE O	<u>ه</u>	. 19	•	•	35	199	8	18	83
0.0	333				STIE D	SITE	2	•	•	•2		5.55	15		1
	077				SILED	STIL		•				2002	×		• :
	2/3				STIE /	STIF 8	1.5°C	::	TEMP						

HNPP (tomaculae)

Polyneuropathy Associated with Hypothyroidism

FIG. 2. Compound action potential of fascicles of sural nerve from healthy 21-year-old man (Top) and from 55-year-old man (case 1) (Middle) and 71-year-old woman (case 2) (Bottom) with neuropathy associated with hypothyroidism. In patients, myelinated fiber potentials, A alpha and A delta, are reduced in amplitude and conduction velocity; amplitude of C fiber potential is also reduced but conduction velocity is unaffected. Action potentials were recorded 20 mm from stimulating cathode.

From: Dyck & Lambert, Journal of Neuropathology & Experimental Neurology, 1970

Polyneuropathy Associated with Hypothyroidism

FIG. 3. Spectrum of fiber diameters in healthy sural nerve (N33-69). Peak of small-fiber group falls at approximately 1.9 μ and that of large-fiber group, at approximately 8 μ . Fro. 4. Spectrum of fiber diameters in Case 1. Peak of small-fiber group is approximately 1.9 μ but there is no large-fiber peak but only less-steep slope to right of small-fiber peak.

Healthy sural nerve

Hypothyroidism

From: Dyck & Lambert, Journal of Neuropathology & Experimental Neurology, 1970
Polyneuropathy Associated with Hypothyroidism

From: Dyck & Lambert, Journal of Neuropathology & Experimental Neurology, 1970

Polyneuropathy Associated with Hypothyroidism

FIG. 9. Demyelinated internode of myelinated fiber from sural nerve in Case 1. Demyelinated internode (axis cylinder = AC) is surrounded by abundant Schwann cell cytoplasm (SCC) which contains myelin ovoids (MO) of various sizes, mitochondria, and endoplasmic reticulum; $\times 31,600$.

FIG. 10. Portion of myelinated fiber from sural nerve in Case 1, showing degenerative changes within axis cylinder. Although myelin is intact, contents of axis cylinder are altered and lamellar bodies are present; \times 39,520.

From: Dyck & Lambert, Journal of Neuropathology & Experimental Neurology, 1970

Polyneuropathy Associated with Hypothyroidism

From: Dyck & Lambert, Journal of Neuropathology & Experimental Neurology, 1970

Correlation of Nerve Conduction Abnormalities and Underlying Nerve Fiber Alteration

Low CMAP/SNAP (normal CV)

 axonal degeneration
 loss of large fibers

Necrotizing Vasculitis with Fibrinoid Necrosis

From: Burns, Schaublin and PJB Dyck, Vasculitic Neuropathies, Neurologic Clinics, 2007

Rheumatoid Arthritis and Necrotizing Angiopathic Neuropathy central fascicular fiber loss

Friedreich's Ataxia

Fig. 18. Compound action potentials of sural nerve from a healthy person and from patients with Friedreich's ataxia, hereditary sensory radicular neuropathy and tabes dorsalis. Note great reduction in amplitude of A alpha potential in Friedreich's ataxia, the reduction in amplitude of all three peaks in hereditary sensory radicular neuropathy (greatest in the C potential, less in the A delta and least in the A alpha) and lack of abnormality in tabes dorsalis.

From: Dyck & Lambert et al, Handbook of Electroencephalography and Clinical Neurophysiology

Friedreich's Ataxia

Amyloid

congo red

apple-green birefringence

Amyloid

Correlation of Nerve Conduction Abnormalities and Underlying Nerve Fiber Alteration

Low CMAP/SNAP and low CVs

 mixed axonal degeneration and demyelination

-loss of large fibers

-regeneration

Uremic Neuropathy

Uremic Neuropathy Myelinated Fiber Diameter in Sural Nerve

Uremic Neuropathy

Fiber Regeneration 48 M with mildly low CVs and prolonged F latencies

Stimulate (Record)	$A (mV/\mu V)$	CV (m/s)	DL (ms)	F (ms)
Median motor (APB)	10.6 (>4)	46 (>48)	4.0 (<4.5)	37.1 (<32)
Median sensory (Index)	18 (>15)	44 (>56)	3.4 (<3.6)	
Ulnar motor (ADM)	8.9 (>6.0)	50 (>51)	3.0 (<3.6)	36.9 (<32)
Ulnar sensory (Fifth)	12 (>10)	48 (>54)	3.4 (<3.1)	
Peroneal motor (EDB)	1.0 (>2)	34 (>41)	4.8 (<6.6)	78.2 (<58)
Sural sensory (Ankle)	0	-	NR	
Tibial motor (AH)	2.1 (>4)	31 (>40)	5.6 (<6.1)	78.2 (<58)

Regenerating Clusters – Loss of Large Fibers

Introduction to Fascicular Nerve Biopsies

- Whole distal cutaneous biopsies appropriate for most neuropathies.
- For asymmetric, motor predominant, focal or proximal neuropathies, a distal cutaneous nerve biopsy will miss the pathological process.
- Fascicular biopsies at the site of focal MRI lesions may be useful and have therapeutic implications.

Case 1

- 62 year old woman with pain and tingling of bottom of her left foot; unable to walk on tiptoes.
- Neurological examination and EMG showed a left tibial neuropathy.
- MRI showed increased T₂ signal and enlargement of the tibial nerve at the popliteal fossa.
- Whole sural and then fascicular tibial nerve biopsies were obtained.

Nerve Conduction Studies

Stimulate (Record)	$A(mV/\mu V)$	CV (m/s)	DL (ms)	F (ms)
R. Peroneal motor (EDB)	3.2 (>2)	51 (>41)	4.0 (<6.6)	
L. Peroneal motor (EDB)	5.3 (>2)	47 (>41)	4.4 (<6.6)	44 (<58)
R. Sural sensory (Ankle)	13 (>0)			3.4 (<4.5)
L. Sural sensory (Ankle)	5 (>0)	52 (>40)	3.5 (<4.5)	
R. Tibial motor (AH)	13.4 (>4)	47 (>40)	3.6 (<6.1)	43.8 (<58)
L. Tibial motor (AH)	0 (>4)		NR	

Muscle	Insertional activity	Fibrillation	Fasciculation	MUP
R. Gastrocnemius medialis	Normal	0	0	Normal
L. Abductor hallucis	Increased	+++	0	none
L. Gastrocnemius medialis	Increased	++	0	2 + big
L. Gluteus maximus	Normal	0	0	Normal
L. Peroneus longus	Normal	0	0	Normal
L. Semimembranosus	Normal	0	0	Normal
L. Tibialis anterior	Normal	0	0	Normal
L. Paraspinal lumbar (lower)	Normal	0	0	Normal
L. Biceps fem. (short head)	Normal	0	0	Normal

Sural

Fascicular Tibial Teased Fibers - Demyelination

Fascicular Tibial

CD45

CD68

SMACTIN

- Pathology: inflammatory demyelination
- Diagnosis: chronic immune demyelinating mononeuropathy (CIDM)
- Treatment: PLEX

Case 2

- 37 year old man with subacute lower extremity pain and weakness (L>R).
- Hx of large B-cell lymphoma; treated with intrathecal methotrexate for lymphoma of the leptomeninges (CSF cytology negative).
- NCS/EMG showed bilateral lumbosacral plexopathy.
- MRI showed increased T₂ signal and enlargement of sciatic nerves and LS plexus.
- Whole sural nerve biopsy and then fascicular sciatic biopsy were obtained.

- Pathology and diagnosis: B-cell lymphoma of nerve
- Treatment: high-dose chemotherapy followed by stem cell rescue
- Marked improvement went back to being a martial arts instructor

Sparring with an invisible opponent

Martial arts expert battles rare and difficult cancer with the help of a team of Mayo experts

y anyone's standards, Greg Nelson is tough. The founder, owner and head coach at the Minnesota Martial Arts Academy in Minneapolis, Greg is one of the top martial artists in the world. He's also a former gymnast and collegiate wrestler. He expects a great deal from his body, and is familiar with the aches and pains that come with intense training and competition.

But in the spring of 2002, Greg began experiencing pain unlike any he'd known before. It started in his back and eventually moved down his body.

"I was taking pain medication, but it didn't do anything to relieve my symptoms," he says. "And I was incredibly rundown."

Greg's physician ran him through a battery of tests. On Memorial Day 2002, a CAT scan revealed that Greg had stage IV non-Hodgkin's lymphoma. The cancer had spread to his liver and spleen. The news was a shock, but there was a measure of relief in finally having an opponent to fight.

"Once we knew what was wrong, we were prepared to deal with it," says Greg's wife, Vee. "Not knowing was the hard part."

Greg immediately started a six-month course of chemotherapy, and was overjoyed when his back pain disappeared. After his fifth month of chemotherapy, tests revealed that his cancer had gone into remission.

Greg thought he'd wrested another opponent into submission. But he would soon learn his battle with cancer was only beginning. A new pain emerged. And finding the cause this time was even more difficult. Coming up with a diagnosis would take a great deal of detective work by a team of Mayo Clinic specialists.

Unraveling a mystery

Everyday Miracles

When the new pain emerged, it moved down Greg's body, and his muscles began to weaken. The 38-year-old, who just a year earlier had been winning gold medals in international jujitsu competitions, came to rely on a cane to help him walk. At home, he would drop to the floor and crawl from room to room rather than walk on legs that throbbed with pain.

Case 3

- 16 year old girl with 5 years of left foot drop and numbness. No pain.
- Neurological examination and EMG showed a left sciatic neuropathy, peroneal more than tibial.
- MRI showed mild proximal sciatic nerve enlargement and increased T₂ signal.
- A left fascicular sciatic biopsy was performed.

From: Hahn, Mauermann, PJB Dyck & Keegan, Neurology, 2007

Perineurioma

From: R Spinner

Perineurioma

• Pathology and diagnosis: Perineurioma

Case 4

- 71 year old woman with gradual onset (over 4 years) of left thumb numbress, proximal and then distal arm weakness.
- History of breast cancer (24 years earlier) treated with chemotherapy.
- Examination and EMG showed a severe left brachial plexopathy.
- MRI showed increased size and enhancement of the left brachial plexus.
- A left brachial plexus biopsy was obtained.

- Pathology: adenocarcinoma of brachial plexus
- Diagnosis: metastatic breast cancer

Conclusions

- Nerve conduction studies and nerve biopsies are both clinically useful and give complimentary information.
- There is still a place for nerve biopsies in clinical practice, but they should be performed at institutions with expertise in nerve pathology.
- With improved imaging, fascicular nerve biopsies from the site of a radiological lesion are becoming increasingly important.

Acknowledgements

Peter J. Dyck, M.D.

Edward H. Lambert, M.D.

Acknowledgements

Robert Spinner, M.D. Neurosurgery Radiology Kim Amrami, M.D. Nerve Histology JaNean Engelstad Larry Witt Jan Planells Lisa Baker **Belinda** Hoebing Jane Norell

Data Analysis

Case Selection

Peter J. Dyck, M.D. Christopher Klein, M.D. **Peripheral Nerve Fellows Neurology Colleagues**