New Era of Epilepsy Surgery understanding of the epileptic networks

Piradee Suwanpakdee, MD. Division of Neurology Department of Pediatrics Phramongkutklao Hospital

Outline

- The evolving of the epilepsy surgery and the concept of epileptogenic zone (EZ)
- SEEG and Epileptogenic networks
- Correlating semiology with SEEG signal analysis: connectivity

Epilepsy surgery

- Treatment option for medically refractory seizure
- Surgically remediable syndrome
 - Mesial temporal lobe epilepsy
 - Well circumscribed lesional partial epilepsy
 - Hemispheric epilepsy syndrome
 - Epilepsies in infants and young children due to large or diffuse lesions limited to one hemisphere

Epilepsy surgery

Resective surgery

- Lesionectomy
- Selective amygdalohippocampectomy
- Corticectomy
- Lobectomy
- Multilobar resection

Epileptogenic Zone

Palliative Surgery

- Corpus Callosotomy
- Multiple Subpial Transections
- Vagus Nerve Stimulator

Lara Jehi, Epilepsy currents 2018

Concept	Definition	Contemporary Tool Used to Define It
Primary localizing diagnosis	Estimate of where in the brain the seizure starts	EEG ictal recordings
Secondary localization	Extent and localization of the cortex that is recruited into abnormal discharging activity in a clinical seizure	Seizure spread in intracranial chronic recording
Tertiary localization	How much of the total potentially epileptogenic area must be excised to produce a satisfactory long-term reduction of the patients' seizure tendency	Limited capability to define

Lara Jehi, Epilepsy currents 2018

- In 1965, Talairach and Bancaud highlighted the inadequacy of the epileptogenic lesion definition given "a certain number of unsatisfactory surgical results"
- "Epileptogenic zone" (EZ) to reflect "the site of the beginning of the epileptic seizures and of their primary organization"
- Developed SEEG
- "Anatomo-electro-clinical" methodology

 In 1993, Luders et al. defined the EZ as "the area of cortex that is necessary and sufficient for initiating seizures and whose removal (or disconnection) is necessary for complete abolition of seizures"

Network Epilepsy: 2000s to Present "SEEG/Depth Recordings"

Lara Jehi, Epilepsy currents 2018

- In 2016, SEEG became the most frequently performed intracranial monitoring procedure in the Medicare population, increasing from 28.8% of total cases in 2000 to 43.1% in 2016 (p = 0.02).
- The factors driving these changes are unknown

What is Stereoelectroencephalography (SEEG)?

Three-dimensional exploration of the brain using depth electrodes

Implant of cerebral structures with the precision of stereotactic methodology

Very precise sampling and easier to reach deep areas of cortex

SEEG ≠ Depth electrodes

Anatomo-Electro-Clinical correlations

• Brain connectivity/Epileptic network

The most important characteristic of SEEG

It enables precise recordings from *deep cortical* and subcortical structures, *multiple* noncontiguous lobes, as well as *bilateral explorations* while avoiding the need for large craniotomies

Early observations from SEEG Anticipated concept of **Epileptic networks**

Epileptogenic zone (EZ)= region of primary organization of ictal discharge (Bancaud 1965)

Dynamic **spatiotemporal** characteristics

Anatomo-Electro-Clinical (AEC) correlations

Bonini F, et al. Epilepsia 2014

Temporal lobe epilepsy

Epilepsia, 45(12):1590–1599, 2004 Blackwell Publishing, Inc. © 2004 International League Against Epilepsy

Semiologic and Electrophysiologic Correlations in Temporal Lobe Seizure Subtypes

*†Louis Maillard, †Jean-Pierre Vignal, *Martine Gavaret, *Maxime Guye, ‡Arnaud Biraben, *Aileen McGonigal, *Patrick Chauvel, and *Fabrice Bartolomei

*Service de Neurophysiologie Clinique, Hôpital de la Timone, Inserm EMI 99-26, Université de la Méditerranée, Marseille; †Service de Neurologie, Centre Hospitalier Universitaire, Université Henri Poincaré, Nancy; and ‡Service de Neurologie, Centre Hospitalier Universitaire, Rennes, France SEEG studies with detailed semiological analysis have Allowed characterization of temporal lobe subtypes

1) Medial subtype

3) Lateral subtype

Early ictal features	Medial 24 (%)	Medial-Lateral 18 (%)	Lateral 13 (%)	Degree of significance
Initial loss of contact Early oroalimentary automatisms Early vocalizations (groaning, howling, moaning) Early verbal automatisms Early upper-limb elementary automatisms Early upper-limb tonic posturing	0 6 (25) 3 (12.5) 0 8 (33.3) 2 (8.3)	7 (38.9) 10 (55.6) 7 (38.9) 5 (27.8) 7 (38.9) 0	7 (53.8) 1 (7.7) 1 (7.7) 0 1 (7.7) 1 (7.7)	$p < 0.0001^{a}$ $p = 0.015^{a}$ $p = 0.048^{a}$ $p = 0.028^{a}$ p = 0.13 p = 0.45
Early head and/or eyes deviation	3 (12.5)	4 (22.2)	3 (23.1)	p = 0.67

TABLE 4. Distribution of the early ictal signs according to the electrophysiologic subtypes

^aSignificant.

Late ictal features	Medial 24 (%)	Medial-Lateral 18 (%)	Lateral 13 (%)	Degree of significance
Late oroalimentary automatisms	14 (58.3)	4 (22.2)	2 (15.4)	$p = 0.012^{a}$
Late upper-limb elementary automatisms	14 (58.3)	7 (38.9)	2 (15.4)	$p = 0.039^{a}$
Late vocalization	5 (20.8)	0	2 (15.4)	p = 0.12
Late verbal automatisms	3 (12.5)	2 (11.1)	0	p = 0.40
Late upper-limb tonic posturing	6 (25)	5 (27.8)	1 (7.7)	p = 0.41
Late head and/or eyes deviation	8 (33.3)	6 (33.3)	3 (23.1)	p = 0.86
Late dysphasia	6 (25)	3 (16.7)	0	p = 0.14

TABLE 5. Distribution of the late ictal signs according to the electrophysiologic subtypes

^aSignificant.

Temporal lobe connection

doi:10.1093/brain/awm108

Brain (2007), 130, 1957–1967

Ictal clinical and scalp-EEG findings differentiating temporal lobe epilepsies from temporal 'plus' epilepsies

C. Barba,^{1,2} G. Barbati,³ L. Minotti,⁴ D. Hoffmann⁵ and P. Kahane⁴

¹Pediatric Neurology Unit, Children's Hospital "A. Meyer", Florence, Italy, ²Post-Coma Unit, Santa Lucia Foundation, Rome, Italy, ³AFaR-Center of Medical Statistics and IT, Fatebenefratelli Hospital, Rome, Italy, ⁴Neurology Department & INSERM U704, Grenoble and ⁵Neurosurgery Department, University Hospital, Grenoble, France

Correspondence to: C. Barba, Children's Hospital "A.Meyer", via Luca Giordano I3, 50132, Florence, Italy E-mail: carmen.barba@tiscali.it

Temporal plus epilepsy is a major determinant of temporal lobe surgery failures

Carmen Barba,¹ Sylvain Rheims,^{2,3,4} Lorella Minotti,⁵ Marc Guénot,⁶ Dominique Hoffmann,⁷ Stephan Chabardès,⁷ Jean Isnard,² Philippe Kahane^{5,8} and Philippe Ryvlin^{3,4,9}

Recognition of TLE subtypes helps exploration strategy and impact on surgical outcome Case a 31-year-old with intractable epilepsy, RH Seizure onset: 14 years Seizure: focal impaired awareness

Scalp EEG Interictal: T7/P7

5 FP2³F8

MRI: suspected DNET at dorsal left middle temporal gyrus at the temporal occipital junction

PET scan SEVERE HYPOMETABOLISM IN THE LEFT LATERAL T-O JUNCTION

Interictal map

Case a 31-year-old with intractable epilepsy, RH Seizure onset: 14 years Seizure: focal impaired awareness

Case a 9-year-old boy with intractable epilepsy

- ชักครั้งแรก อายุ 3 ปี
- ลักษณะชัก: ผู้ป่วยจะดูสับสน ขยับตัว มือขยับ
 ไปมา เรียกไม่รู้สึกตัว เป็นนาน 10-15 นาที
- MRI brain: unremarkable
- EEG:
 - Interictal: T3, F7, Fp1, Fz
 - Ictal: 1. F7, T3
 - 2. Fp1, F3

• video

SW T3

Interictal EEG

SW Fp1/Fz

1 Fp1-F7 2 F7-T3 3 T3-T5 4 T5-01	50.0 [50.0 [50.0 [50.0 [M		and the second	t	willing to			A A A A A A A A A A A A A A A A A A A		W							who who		ANA ANA		Marine and	www www mhulu	~~~~ V/~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	nni Nni Mariada	and the	how		n Virv Anna Winner		mm mm	-				•	C	ta	al	E	E	EC)			
6 Fp1-F3 7 F3-C3 8 C3-P3 9 P3-O1		X					A for) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	EEC F	30 7, ⁻	nse T3	et		hy all the second se	Jod Jod Marak			milin			White	Maria Maria	~~~~ ~~~~ Mww/~	www.		le ander	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~																		
11 Fp2-F4 12 F4-C4 13 C4-P4 14 P4-O2	5047 [5047] 5047] 5047]	www.		X		which has				- Y	A A A A A A A A A A A A A A A A A A A	st.	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Annald		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	n normal		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	n n	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~															
16 Fp2-F8 17 F8-T4 18 T4-T1 19 T6-O 3	50.0 [Fb1+F7 F7-T3 T3-T5					~	1 m		24	2								~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			×++>		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		h						Y.	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	X	<u>^</u>		My		\$ }		¥.	\$ }	Ŵ	NX NX
21 Fz-C2 4 22 Cz-Pi 6 24 <i>0V-X</i> 8	T5-01 Fp1-F3 F3-C3 C3-P3			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	21		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~							~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	57		Ma	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~		app ~~	m hy m							~ h		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	AL.				YM YM			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
M 9	P3-01 Fp2-F4 F4-C4 C4-P4 P4-02				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	inter and inter		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		Fr					122		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	**	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	st.			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~								A.						~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
16 17 18 19	Fp2-F8 F8-T4 T4-T6 T6-O2			non man	n n n n n n n n n n n n n n n n n n n	mp			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~						2	222	shi m		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	22/22				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~														2
21 22 24	Fz-Cz Cz-Pz <i>OV-X1</i>		CO2 Vise	~~~	nn nn	M	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	M	~	~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~	~~~		2			~	A	m 		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		h	~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			~~~								\		~~~~	

An

Tim

1

Phase I noninvasive evaluation

Lesion MRI/VBM PET Neurological exam Neuropsychology Ictal data Video-EEG Ictal SPECT Ictal and post-ictal Neurologic and neuropsychologic examination

Interictal Data Video-EEG High density EEG MEG

PET

Phase I noninvasive evaluation

Lesion MRI-nonlesional Neurological examnormal Neuropsychology Ictal data Video-EEG-2 Ictal onset 1.F7,T3 2.F3 Ictal SPECT-Left frontal

Frontotemporal network

Frontal vs. Temporal?

Frontal lobe seizures: From clinical semiology to localization

*†^IFrancesca Bonini, *†‡^IAileen McGonigal, *†‡Agnès Trébuchon, *†‡Martine Gavaret, *†‡Fabrice Bartolomei, *†§Bernard Giusiano, and *†‡Patrick Chauvel

> *Epilepsia*, 55(2):264–277, 2014 doi: 10.1111/epi.12490

Group 1 Group 2 24c pre-sma pre-sma 8d parietal 8d 81 insula 9/46d 9/46v 46 46 11 10 13 11 10 temporal temporal 13 10 45 45 amygdala amygdala 47/12 47/12 47/12 47/12 Group 3 Group 4 pre-sma 8d parietal parietal 8d insula insula 746d 4 low 9/46v 9/46v temporal 46 temporal amygdala amygdala 47/12

Group 2

Group 4

Association of elementary motor signs and Proximal gestural motor Beh; non-integrated appearance

Fear-related behaviour,

no elementary motor signs

Group 3 Distal stereotypies, Integrated appearance, No elementary signs

Group 1

Elementary motor signs

With no gestural behaviour

Video

Group 2

Association of elementary motor signs and Proximal gestural motor Beh; non-integrated appearance

Proximal stereotypies No facial expression dista

ression distal stereotypies

R leg stereotypies

Group 3

Distal stereotypies, Integrated appearance, No elementary signs

Frontotemporal network Knowing epileptic network helps

Progression

- Surgery: resection of the left frontal pole (involve O')
- Pathology: FCD type IIa
- Seizure outcome: Engel I (seizure free since surgery)
- Improvement of development

Frontal lobe epilepsy: seizure semiology and presurgical evaluation

Dr Aileen McGonigal' and Professor Patrick Chauvel*

*Director of Neurophysiology and Neuropsychology and *Clinical Research Felow in Epileptology, Service de Neurophysiologie Clinique, Hópital de la Timone and Laboratoire de Neurophysiologie et Neuropsychologie, INSERM EM19926, Faculté de Médecine, Marseille, France; Emait aleenmog@hotmail.com Practical Neurology, 2004, 4, 260-273

Parietal lobe epilepsy: "frontal pattern"

Patterns of spread from occipital lobe seizure origin. (From Ajmone-Marsan and Ralston, 1957, with permission.)

Epilepsia, **45**(9):1079–1090, 2004 Blackwell Publishing, Inc. © 2004 International League Against Epilepsy

> Clinical Manifestations of Insular Lobe Seizures: A Stereo-electroencephalographic Study

*Jean Isnard, †Marc Guénot, †Marc Sindou, and *François Mauguière

*Functional Neurology and Epileptology Department and †Functional Neurosurgery Department, Neurological Hospital, Lyon, France

This ictal sequence occurred in full consciousness, beginning with a sensation of **laryngeal constriction Laryngeal discomfort** or throat tightening associated with **unpleasant paresthesias or sensations of warmth affecting the perioral region** or large somatic territories, followed by **focal somatomotor** manifestations

Semiologic subgroups based on insular connectional **architecture** rather than gyral anatomy

EPILEPSIA APRIL 2020

DOI: 10.1111/epi.16501

Semiologic subgroups of insulo-opercular seizures based on connectional architecture atlas

Haixiang Wang¹, Aileen McGonigal^{2,3}, Kai Zhang⁴, Qiang Guo⁵, Bingqing Zhang¹, Xiu Wang⁵, Xiao Wang⁶, Jiuluan Lin¹, Xiancheng Song¹, Qian Feng¹, Siyu Wang¹, Mengyang Wang⁶, Xiaoqiu Shao⁷, Xiaoyan Liu⁸, Liang Wang^{9,10}, Wenjing Zhou¹

<u>Methods</u>: Retrospectively collected a large series of 37 patients with insuloopercular seizures explored by SEEG <u>Result:</u>

- Group 1 -epigastric sensation and/or integrated gestural motor behaviors with or without feelings of fear or rage
- Group 2 auditory sensations and symmetric proximal/axial tonic signs
- Group 3 were orofacial and laryngeal signs
- Group 4 were somatosensory signs followed by nonintegrated gestural motor behaviors and/or asymmetric tonic signs

Insula connections based on probable cytoarchtectural areas

Granular insula, well developed layer IV

Dysgranular insula, disorganized layer IV

Agranular insula, loss of layer IV

Correlating semiology with SEEG signal analysis: connectivity

Semiology and Epileptic Networks

Aileen McGonigal, MD, PhD^{a,b}

Table 2 Examples of studies examining semiology in conjunction with signal analysis of stereoelectroencephalography												
Investigators, Year	Semiological Pattern	Epilepsy Localization	Main Anatomic Structures	Signal Analysis	Change in Network Synchrony							
Bartolomei et al, ⁵¹ 2002	Humming	Temporal lobe	STG, prefrontal cortex	Rhythmic discharge over STG (6 or 15 Hz). Increased coherence between STG and prefrontal cortex	Increased							
Bartolomei et al, ⁵² 2005	Fear behavior	Prefrontal cortex	Ventromesial orbitofrontal cortex, anterior cingulate, amygdala (limbic system)	Sudden loss of synchrony between orbitofrontal cortex and amygdala at seizure onset/clinical onset	Decreased							
Arthuis et al, ⁵³ 2009	Impaired consciousness	Temporal lobe	Temporal structures, parietal lobe, thalamus	Excessive synchrony; ie, functional coupling, between temporal and extratemporal structures, notably parietal cortex and thalamus	Increased							
Bartolomei et al, ⁵⁴ 2012	Déjà vu	Mesial temporal lobe	Rhinal cortices, hippocampus	Increased high-frequency EEG signal correlation between mesial temporal structures in seizures producing déjà vu	Increased							
Lambert et al, ⁵⁵ 2012	Impaired consciousness	Parietal lobe	Superior and inferior parietal lobules, precuneus, parietal operculum, supplementary motor area	Increased synchrony was associated with progressively greater degrees of altered responsiveness. A statistically significant nonlinear relationship was found between h2 values and degree of alteration of consciousness, suggesting a threshold effect	Increased							
Aupy et al, ⁵⁶ 2018	Oroalimentary automatisms	Temporal lobe	Medial basal temporal lobe, opercular cortex	Increased coherence occurred between mediobasal temporal structures and insulo-opercular cortex before onset of rhythmic chewing movements	Increased							

FULL-LENGTH ORIGINAL RESEARCH

Insulo-opercular cortex generates oroalimentary automatisms in temporal seizures

Epilepsia

Jerome Aupy^{1,2,3} | Ika Noviawaty^{1,4} | Balu Krishnan¹ | Piradee Suwankpakdee^{1,5} | Juan Bulacio¹ | Jorge Gonzalez-Martinez¹ | Imad Najm¹ | Patrick Chauvel¹

- In seizures with medial temporal onset, oroalimentary automatism occurrence depends on ictal discharge propagation to *operculo-insular areas*
- Rhythmically synchronized activity at *theta frequency* between amygdala-hippocampus and operculo-insular cortex underlies the emergence of oroalimentary automatisms in temporal seizures

Analyze semiology in order Early signs more reliable

J Neurol Neurosurg Psychiatry 2001;70:186-191

Fear as the main feature of epileptic seizures

A Biraben, D Taussig, P Thomas, C Even, J P Vignal, J M Scarabin, P Chauvel

This limbic network involve- Orbitoprefrontal

- Anterior cingulate
- Temporal limbic cortices

Look for the clue of exactly localization

 The ictal *motor* behavior appears as an *integrated* feature within an emotional context

Chauvel P, SEEG workshop, Cleveland clinic

humming

Ictal Humming

- MTLS onset
- Arising with spread of theta discharge
- Through a STG-IFG network activation

Bartolomei et al., 2002 Guedj et al., 2006

1- Ventral stream synchronizes with hippocampus

2- ER *shifts* the mode of cerebral processing from one of identifying external stimuli to one of *retrieving* internal representations

Future direction of Epilepsy surgery

- Maximize the yield of current methods (Multimodality integration)
- Imaging of "Epileptic lesion"

We need to visualize the molecular substrate of the Epileptic Lesion

MR fingerprinting (MRF): New results with novel technique for quantitative MRI

- T1 maps from the 3D MRF scan in axial and coronal views showing the nodules at the occipital horn of the right lateral ventricle (arrows) representing significantly higher T1 values, differentiating themselves from the other nodules.
- The nodules with the higher T1 values were later confirmed to have caused the epilepsy in this patient, who is now seizure-free after resection.

Post-processing Voxel-based morphometry (VBM)

Next frontier: MRF + post-processing Discover epileptic lesion??

Cingulate epilepsy

Orbitofrontal epilepsy

Conventional MRI T1-image

VBM

Post surgery Sz-free

Future direction of Epilepsy surgery

- Surgery of genetic epilepsy
- Post surgical preventive therapies (target based gene therapy)

nature neuroscience, March 2017

Thank you

